搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远场来流对深胞晶界面形态稳定性的影响

陈凯 蒋晗

引用本文:
Citation:

远场来流对深胞晶界面形态稳定性的影响

陈凯, 蒋晗

Influence of far field flow on interface morphological stability of deep cellular crystal

CHEN Kai, JIANG Han
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通过构建一个包含温度场、浓度场和远场来流的数学模型, 运用多重变量展开法与匹配渐近展开法, 推导出胞晶界面扰动振幅变化率的色散关系及界面形态量子化条件, 分析了远场来流作用下定向凝固中深胞晶生长的稳定性, 并揭示了远场来流对不稳定区域大小的影响. 研究结果表明, 在考虑了远场来流的定向凝固中, 深胞晶生长界面形态有两种整体不稳定性机制: 整体振荡(GTW)不稳定性, 其中性模式产生强振荡的枝晶结构; 低频(LF)不稳定性, 其中性模式产生弱振荡的胞晶结构. 通过稳定性分析发现, 在远场来流的影响下, 深胞晶的界面稳定性取决于临界稳定性参数, 而该参数随着流动强度的增强而减小, 整体振荡不稳定性的稳定区域逐渐扩大.
    Directional solidification technology artificially controls the propagation rate at the solid-liquid interface to promote the development of the metal microstructure in the expected direction. In the process, the solid-liquid interface will produce complex and diverse microstructures, of which cellular crystal and dendritic structure are typical microstructures in the interface formation process, which have a direct influence on the quality and properties of the final material. Based on the fact that the far-field flow is not strongly affected by local perturbations and has the characteristics of relative stability and homogeneity, a mathematical model including the temperature field, the concentration field and the far field flow is established in this work. According to the interfacial wave theory, a finger coordinate system is constructed using the constant solution of cellular crystal growth as the ground state, and fast variables are introduced for variable replacement using multivariate expansion method and matched asymptotic expansion method used to introduce. The eigenvalue problem of linear perturbation dynamics in the case of far-field flow is solved, and the dispersion relation of the change rate of the perturbation amplitude at the interface of the cellular crystal and the quantization condition of the interface morphology are derived. The stability of the growth of deep cellular crystal in directional solidification under the action of far-field flow is analyzed. and the basis for judging the critical stability of the deep cellular crystal growth is established. The effect of far-field flow on the size of the unstable region is revealed.The results show that in the directional solidification considering the far-field flow, there are two overall instability mechanisms for the interfacial morphology of the growth of deep cellular crystal: the global oscillatory instability (GTW-mode) and the low-frequency instability (IF-mode). The system allows of the symmetric S-mode and the antisymmetric A-mode. The stability analysis shows the following points: the interfacial stability of deep cellular crystal depends on the critical stability parameter; if the interfacial stability parameter of deep cellular crystal is larger than the critical stability parameter, the growth of deep cellular crystal is stable; if it is smaller than the critical stability parameter, the growth of deep cellular crystal is unstable, whereas the critical stability parameter decreases with the enhancement of the flow intensity. Under the influence of far field flow, for the same index n, the growth rate of the GTW-S mode is much greater than that of the GTW-A mode, which is said to be more dangerous than the GTW-A mode, and the n = 0 case in the GTW-S mode is the most dangerous oscillation mode with the largest unstable region. In addition, as the flow intensity Gu increases, the stable region of the overall oscillatory instability of the dendritic structure, where the neutral mode generates strong oscillations, also becomes larger.
  • 图 1  胞晶列界面图

    Fig. 1.  Cellular crystal array interface diagram.

    图 2  基于 Saffmen-Taylor 解构造的曲线坐标系$ \left( {\xi , \eta } \right) $[13]

    Fig. 2.  Curve coordinate system $ \left( {\xi , \eta } \right) $ based on Saffmen-Taylor solution[13].

    图 3  GTW-S模式的特征值的实部随$ \varepsilon $的变化曲线. 参数分别为$ n = 0, {\text{ 1, 2, }} $$ \kappa = 0.3, $$ Gu = 0.1, $ $ {\lambda _{\text{G}}} = 0.2, $ $ {G_{\text{c}}} =2.0 \times $$ {10^{ - 5}}, $ $ {\varepsilon _{\text{c}}} = 0.01, $ $ M = 0.08, $ $ {\lambda _0} = 0.45, $ $ {W_0} = 2.1332$

    Fig. 3.  The real parts of the eigenvalues of the GTW-S mode variation with $ \varepsilon $. With the parameters $ n = 0, {\text{ 1, 2, }} $ $ \kappa = 0.3, $ $ Gu = 0.1, $$ {\lambda _{\text{G}}} = 0.2, $ $ {G_{\text{c}}} = 2.0 \times {10^{ - 5}}, $ $ {\varepsilon _{\text{c}}} = 0.01, $ $ M = 0.08, $ $ {\lambda _0} = 0.45 $ and $ {W_0} = 2.1332 $.

    图 4  GTW-S模式的特征值的实部随$ \varepsilon $的变化曲线. 参数分别为$ n = 0, $$ \kappa = 0.3, $$ Gu = 0, {0}{.1}, {0}{.2}, $$ {\lambda _{\text{G}}} = 0.2, $$ {G_{\text{c}}} = $$ 2.0 \times {10^{ - 5}}, $$ {\varepsilon _{\text{c}}} = 0.01, $$ M = 0.08, $$ {\lambda _0} = 0.45, $ $ {W_0} = 2.1332 $$

    Fig. 4.  The real parts of the eigenvalues of the GTW-S mode variation with $ \varepsilon $. With the parameters $ n = 0, $ $ \kappa = 0.3, $ $ Gu = 0, {\text{ }}0.1, {\text{ }}0.2, $ $ {\lambda _{\text{G}}} = 0.2, $ $ {G_{\text{c}}} = 2.0 \times {10^{ - 5}}, $ $ {\varepsilon _{\text{c}}} = 0.01, $ $ M = 0.08, $ $ {\lambda _0} = 0.45 $ and $ {W_0} = 2.1332 $.

    图 5  零级近似GTW-S 中性模式曲线. 参数分别为$ n = $$ 0, {\text{ 1, 2, }} $ $ \kappa = 0.29, $ $ Gu = 0.1, $ $ {\lambda _{\text{G}}} = 0.4989, $ $ {G_{\text{c}}} =0.14485 \times $$ {10^{ - 4}}, $ $ {\varepsilon _{\text{c}}} = 0.5388 \times {10^{ - 2}}, $ $ M = 0.9552 \times {10^{ - 1}} $

    Fig. 5.  The neutral curves of the GTW-S-modes in zeroth-order approximation for the case $ n = 0, {\text{ 1, 2, }} $ $ \kappa = 0.29, $ $ Gu = 0.1, $ $ {\lambda _{\text{G}}} = 0.4989, $ $ {G_{\text{c}}} = 0.14485 \times {10^{ - 4}}, $ $ {\varepsilon _{\text{c}}} = $$ 0.5388 \times {10^{ - 2}}, $ $ M = 0.9552 \times {10^{ - 1}} $.

    图 6  一级近似GTW-S 中性模式曲线. 参数分别为$ n = 0, {\text{ 1, 2, }} $ $ \kappa = 0.29, $ $ Gu = 0.1, $ $ {\lambda _{\text{G}}} = 0.4989, $ $ {G_{\text{c}}} = $$ 0.14485 \times {10^{ - 4}}, $ $ {\varepsilon _{\text{c}}} = 0.5388 \times {10^{ - 2}}, $ $ M = 0.9552 \times {10^{ - 1}} $$

    Fig. 6.  The neutral curves of the GTW-S-modes with first-order approximation for the case $ n = 0, {\text{ 1, 2, }} $ $ \kappa = 0.29, $ $ Gu = 0.1, $ $ {\lambda _{\text{G}}} = 0.4989, $ $ {G_{\text{c}}} = 0.14485 \times {10^{ - 4}}, $ $ {\varepsilon _{\text{c}}} = $$ 0.5388 \times {10^{ - 2}}, $ $ M = 0.9552 \times {10^{ - 1}} $

    图 7  一级近似GTW-S 中性模式曲线$ \left( {n = 0} \right) $. 参数分别为$ Gu = 0, {\text{ }}0.1, {0}{.2}, {\text{ }}0.3, $ $ n = 0, $ $ {\lambda _{\text{G}}} = 0.4989, $ $ {G_{\text{c}}} = $$ 0.14485 \times {10^{ - 4}}, $ $ {\varepsilon _{\text{c}}} = 0.5388 \times {10^{ - 2}}, $ $ \kappa = 0.29, $ $ M = $$ 0.9552 \times {10^{ - 1}} $

    Fig. 7.  The neutral curves of the GTW-S-modes $ \left( {n = 0} \right) $ with first-order approximation for the case $ Gu =0, $$ 0.1, {0.2}, {\text{ }}0.3, $$ n = 0, $ $ {\lambda _{\text{G}}} = 0.4989, $ $ {G_{\text{c}}} = 0.14485 \times {10^{ - 4}}, $ $ {\varepsilon _{\text{c}}} = 0.5388 \times {10^{ - 2}}, $ $ \kappa = 0.29, $ $ M = 0.9552 \times {10^{ - 1}} $

  • [1]

    Mullins W W, Sekerka R F 1963 J. Appl. Phys. 34 323Google Scholar

    [2]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444Google Scholar

    [3]

    王自东, 胡汉起 1997 中国科学: E辑 27 102

    Wang Z D, Hu H Q 1997 Science in China (Series E) 27 102

    [4]

    王自东, 周永利, 常国威, 胡汉起 1999 中国科学: E辑 29 1

    Wang Z D, Zhou Y L, Chang G W, Hu H Q 1999 Science in China(Series E) 29 1

    [5]

    Pelcé P, Pumir A 1985 J. Cryst. Growth 73 337Google Scholar

    [6]

    Pocheau A, Georgelin M 2003 J. Cryst. Growth 250 100Google Scholar

    [7]

    Pocheau A, Georgelin M 2004 J. Cryst. Growth 268 272Google Scholar

    [8]

    Pocheau A, Georgelin M 2006 Phys. Rev. E 73 011604Google Scholar

    [9]

    Georgelin M, Bodea S, Pocheau A 2007 Europhys. Lett. 77 46001Google Scholar

    [10]

    Xu J J 1991 Phys. Rev. A 43 930Google Scholar

    [11]

    Xu J J 1991 Eur. J. Appl. Math. 2 105Google Scholar

    [12]

    Xu J J 1997 Nonlinear Anal. Theory Methods Appl. 30 2775Google Scholar

    [13]

    Chen Y Q, Xu J J 2011 J. Cryst. Growth 318 32Google Scholar

    [14]

    Xu J J, Chen Y Q 2011 Phys. Rev. E 83 061605

    [15]

    Saffman P G, Taylor G I 1958 Proc. R. Soc. London, Ser. A 245 312Google Scholar

    [16]

    蒋晗, 陈明文, 史国栋, 王涛, 王自东 2016 物理学报 65 096803Google Scholar

    Jiang H, Chen M W, Shi G D, Wang T, Wang Z D 2016 Acta Phys. Sin. 65 096803Google Scholar

    [17]

    孙思杰, 蒋晗 2024 物理学报 73 118101Google Scholar

    Sun S J, Jiang H 2024 Acta Phys. Sin. 73 118101Google Scholar

    [18]

    Fan H L, Chen M W, Shan Y Y 2020 Surf. Rev. Lett. 27 1950170Google Scholar

    [19]

    曹斌, 林鑫, 黄卫东 2011 物理学报 60 066403Google Scholar

    Cao B, Lin X, Huang W D 2011 Acta Phys. Sin. 60 066403Google Scholar

    [20]

    李向明, 陈明文, 王自东 2008 北京科技大学学报 30 652

    Li X M, Chen M W, Wang Z D 2008 J. Univ. Sci. Technol. Beijing. 30 652

    [21]

    王建元, 翟薇, 金克新, 陈长乐 2011 物理学报 60 098106Google Scholar

    Wang J Y, Zhai W, Jin K X, Chen C L 2011 Acta Phys. Sin. 60 098106Google Scholar

    [22]

    王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东 2013 物理学报 62 078102Google Scholar

    Wang X B, Lin X, Wang L L, Yu H L, Wang M, Huang W D 2013 Acta Phys. Sin. 62 078102Google Scholar

    [23]

    Pandit K, Upadhyay S R, Tewari S N 2018 J. Cryst. Growth 502 19Google Scholar

    [24]

    Trivedi R, Miyahara H, Mazumder P, Simsek E, Tewari S N 2001 J. Cryst. Growth 222 365Google Scholar

    [25]

    曾红波, 艾新港, 陈明, 王敏, 蒋加旋 2023 工程科学学报 45 541

    Zeng H B, Ai X G, Chen M, Wang M, Jiang J X 2023 Chin. J. Eng. 45 541

    [26]

    Zheng G J, Chen M W 2021 J. Eng. Math. 130 12Google Scholar

    [27]

    Chen M W, Jiang J X, Li L Y, Wang Z D 2022 Metals 12 1487Google Scholar

    [28]

    刘竞, 陈明文 2012 宁夏大学学报(自然科学版) 33 167

    Liu J, Chen M W 2012 J. Ningxia Univ. (Nat. Sci. Ed. ) 33 167

    [29]

    刘焕珍 2024 硕士学位论文 (桂林: 桂林电子科技大学)

    Liu H Z 2024 M. S. Thesis (Guilin: Guilin University of Electronic Technology

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, doi: 10.7498/aps.73.20232008
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, doi: 10.7498/aps.73.20231956
    [3] 孙思杰, 蒋晗. 各向异性界面动力学对深胞晶生长形态稳定性的影响. 物理学报, doi: 10.7498/aps.73.20240362
    [4] 钮迪, 蒋晗. 界面动力学参数对深胞晶界面形态整体波动不稳定性的影响. 物理学报, doi: 10.7498/aps.71.20220322
    [5] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性. 物理学报, doi: 10.7498/aps.69.20201554
    [6] 李晓亮, 陈宪章, 刘郴荣, 黄亮. 复杂势场量子弹球中疤痕态的量子化条件. 物理学报, doi: 10.7498/aps.69.20200360
    [7] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, doi: 10.7498/aps.66.106801
    [8] 蒋晗, 陈明文, 史国栋, 王涛, 王自东. 各向异性表面张力对深胞晶界面形态稳定性的影响. 物理学报, doi: 10.7498/aps.65.096803
    [9] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, doi: 10.7498/aps.62.136401
    [10] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, doi: 10.7498/aps.61.176802
    [11] 曹斌, 林鑫, 黄卫东. 远场来流条件下过冷熔体球晶生长的稳定性. 物理学报, doi: 10.7498/aps.60.066403
    [12] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, doi: 10.7498/aps.57.2476
    [13] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, doi: 10.7498/aps.57.1246
    [14] 陈明文, 王自东, 孙仁济. 远场来流对过冷熔体中球状晶体生长的影响. 物理学报, doi: 10.7498/aps.56.1819
    [15] 马中骐, 许伯威. 精确的量子化条件和不变量. 物理学报, doi: 10.7498/aps.55.1571
    [16] 林 鑫, 李 涛, 王琳琳, 苏云鹏, 黄卫东. 单相合金凝固过程时间相关的界面稳定性(I)理论分析. 物理学报, doi: 10.7498/aps.53.3971
    [17] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, doi: 10.7498/aps.53.3978
    [18] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, doi: 10.7498/aps.50.377
    [19] 殷鹏程. 非线型场量子化展开的推广. 物理学报, doi: 10.7498/aps.26.477
    [20] 贾惟义, 张鹏翔. 磁晶各向异性场引起的YIG单晶微波器件温度不稳定性的最佳补偿. 物理学报, doi: 10.7498/aps.25.254
计量
  • 文章访问数:  207
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-18
  • 修回日期:  2025-04-30
  • 上网日期:  2025-05-10

/

返回文章
返回