-
设计了一种可支持伪表面波双面传输的声学超表面, 并构建了一类声隐身装置. 该超表面由双向开孔的亥姆霍兹共鸣器周期性排列构成, 能够在上下表面之间灵活传导伪表面波, 且结构整体厚度仅为工作波长的1/20, 具有显著的亚波长特性. 本文理论推导了伪表面波模式的色散方程, 得到传播波矢与结构参数之间的依赖关系, 通过优化双面超表面的结构参数, 确保传导过程中的波矢匹配, 实现伪表面波在上下表面之间的高效耦合. 在此基础上, 本文构建了一种“声透明通道”, 通过在障碍物前后两侧铺设双面超表面, 使伪表面波能够传导至结构下表面并绕过障碍物, 实现声隐身效果. 经数值模拟和实验验证, 该装置对不同形状的大尺寸障碍物均表现出良好的鲁棒性, 并且具有一定的工作带宽. 本文提出的伪表面波隐身器件具有结构轻薄、灵活性高等显著优势, 为深亚波长尺度的伪表面波操控及声学器件设计提供了新的研究思路和技术路径.In recent years, people have increased their efforts to use spoof surface acoustic waves (SSAWs) to achieve subwavelength-scale modulation. However, obstacles on the transmission path often cause strong scattering of SSAWs, which limits their practical applications in communications and other fields. In this paper, we propose a new type of acoustic metasurface that supports the SSAWs’ propagation on both sides and design an acoustic stealth device based on such a metasurface. This metasurface is composed of periodically arranged Helmholtz resonators with bidirectional apertures, whose unique structure enables SSAWs to achieve interlayer transitions between the top surface and bottom surface. Remarkably, the total thickness of the structure is only 1/20 of the incident wavelength, exhibiting obvious subwavelength characteristics. We theoretically calculate the dispersion curve of SSAWs, and establish the dependency relationship between the propagation wave vector and the structural parameters. By optimizing the structural parameters of the double-sided metasurface, the wave vector matching during propagation is ensured, thereby achieving efficient transitions with minimal losses between the top and bottom surfaces. We construct a “sound-transparent path” through numerical simulations, allowing waves to bypass obstacles without scattering, and demonstrate that thermoviscous effects exert a negligible influence on transmission efficiency. Furthermore, an experiment is carried out to validate this metasurface’s dual-sided wave-manipulation capability, which demonstrates that the SSAWs maintain their wavefronts during interfacial propagation, showing excellent robustness against large-sized obstacles. The proposed stealth device possesses notable advantages, including a lightweight structure and high flexibility, providing new research perspectives and technical pathways for manipulating SSAWs and designing acoustic devices on a deep subwavelength scale.
-
Keywords:
- double-sided metasurface /
- spoof surface acoustic wave /
- dual-sided acoustic manipulation /
- acoustic cloaking
-
图 2 不同内腔边长w和上下孔径D1和D2的双层超表面所承载伪表面波模式的色散曲线(右下角插图为4种双层超表面的结构单元示意图) (a) w = 1.6703 cm, D1-1 = 0.16 cm, D2-1 = 0.04 cm; (b) w = 1.6092 cm, D1-2 = 0.12 cm, D2-2 = 0.08 cm; (c) w = 1.6092 cm, D1-3 = 0.08 cm, D2-3 = 0.12 cm; (d) w = 1.6703 cm, D1-4 = 0.04 cm, D2-4 = 0.16 cm; 红星代表工作频率为3000 Hz, 对应的传播波数为kx = 78.54 m–1
Fig. 2. Dispersion curves of the spoof surface acoustic waves (SSAWs) supported by the double-layer metasurface with different inner cavity side length w and aperture diameters D1, D2: (a) w = 1.6703 cm, D1-1 = 0.16 cm, D2-1 = 0.04 cm; (b) w = 1.6092 cm, D1-2 = 0.12 cm, D2-2 = 0.08 cm; (c) w = 1.6092 cm, D1-3 = 0.08 cm, D2-3 = 0.12 cm; (d) w = 1.6703 cm, D1-4 = 0.04 cm, D2-4 = 0.16 cm. The red star indicates the operating frequency of 3000 Hz, corresponding to a propagation wavenumber of kx = 78.54 m–1.
图 3 有无双层超表面下的声压场分 (a) 双层/单层共振人工单元上下两侧的声场分布结果; (b)存在热黏性损耗下伪表面波的色散关系计算结果; (c)有无双层超表面情况下的伪表面波透射率对比图粘滞
Fig. 3. Sound pressure distributions of the spoof surface acoustic waves with/without the double-sided metasurface: (a) Sound field distribution of the upper and lower sides of the double-layer/single-layer artificial units; (b) dispersion relation of spoof surface acoustic waves in the presence of the thermal and viscous losses; (c) comparison diagram of spoof surface acoustic wave transmission with and without double-layer metasurface.
图 5 (a)实验装置图; (b)超表面正面声振幅测量结果; (c)超表面正面声相位测量结果;(d)超表面反面声振幅测量结果; (e)超表面反面声相位测量结果
Fig. 5. (a) Experimental setup and device model; (b) measured acoustic amplitude distribution on the front side of the metasurface; (c)measured acoustic phase distribution on the front side of the metasurface; (d) measured acoustic amplitude distribution on the back side of the metasurface; (e) measured acoustic phase distribution on the back side of the metasurface.
表 1 双面超表面单元的结构参数
Table 1. Structure parameters of the unit of the double-sided acoustic metasurface.
结构 边长w/cm 孔径D1/cm 孔径D2/cm 高度h/cm 周期a/cm 深度t/cm 1 1.67 0.16 0.04 0.5 2 0.3 2 1.61 0.12 0.08 0.5 2 0.3 3 1.61 0.08 0.12 0.5 2 0.3 4 1.67 0.04 0.16 0.5 2 0.3 -
[1] 李澔翔, 梁彬, 程建春 2022 中国科学: 物理学 力学 天文学 52 244302
Li H X, Liang B, Cheng J C 2022 Sci. Sin. -Phys. Mech. Astron. 52 244302
[2] Li H X, Rosendo-LóPEZ M A, Zhu Y F, Fan X D, Torrent D, Liang B, Cheng J C, Christensen J 2019 Research 2019 8345683
[3] Lasri O, Sirota L 2023 Appl. Phys. Lett. 123 032201
Google Scholar
[4] Hu J, Liang B, Qiu X J 2019 Appl. Phys. Express 12 27002
Google Scholar
[5] 胡洁, 王昊泽 2020 应用声学 39 799
Hu J, Wang H Z 2020 Appl. Acoust. 39 7993
[6] Chen Z X, Peng Y G, Li H X, Liu J J, Ding Y J, Liang B, Zhu X F, Lu Y Q, Cheng J C, Alù A 2021 Sci. Adv. 7 eabj1198
Google Scholar
[7] Gu Z M, Fang X S, Liu T, Gao H, Liang S J, Li Y, Liang B, Cheng J C, Zhu J 2021 Appl. Phys. Lett. 118 113501
Google Scholar
[8] Wu K, Tan Y, Liu J J, Liang B, Cheng J C 2025 Sci. China-Phys. Mech. Astron. 68 254304
Google Scholar
[9] Jia Y R, Liu Y M, Hu B L, Xiong W, Bai Y C, Cheng Y, Wu D J, Liu X J, Christensen J 2022 Adv. Mater. 34 2202026
Google Scholar
[10] Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett. 122 222202
Google Scholar
[11] Yue Z C, Zhang Z W, Wang H X, Xiong W, Cheng Y, Liu X J 2022 New J. Phys. 24 053009
Google Scholar
[12] Wu H W, Quan J Q, Yin Y Q, Sheng Z Q 2020 J. Phys. D: Appl. Phys. 53 455101
Google Scholar
[13] Zheng Y, Liang S J, Fan H Y, An S W, Gu Z M, Gao H, Liu T, Zhu J 2022 JASA Express Lett. 2 024004
Google Scholar
[14] Liu T, Chen F, Liang S J, Gao H, Zhu J 2019 Phys. Rev. Appl. 11 034061
Google Scholar
[15] Liu J J, Liang B, Cheng J C 2021 Phys. Rev. Appl. 15 014015
Google Scholar
[16] Li H X, Liu J J, Chen Z X, Wu K, Liang B, Yang J, Cheng J C, Christensen J 2023 Nat. Commun. 14 7633
Google Scholar
[17] Hirsch T M F, Mauranyapin N P, Romero E, Jin X, Harris G, Baker C G, Bowen W P 2024 Appl. Phys. Lett. 124 013504
Google Scholar
[18] Dai H Q, Liu L B, Xia B Z, Yu D J 2021 Phys. Rev. Appl. 15 064032
Google Scholar
[19] Zhu Z J, Hu N, Wu J Y, Li W X, Zhao J B, Wang M F, Zeng F Z, Dai H J, Zheng Y J 2022 Front. Phys. 10 1068833
Google Scholar
[20] Dong E Q, Cao P Z, Zhang J H, Zhang S, Fang N X, Zhang Y 2023 Natl. Sci. Rev. 10 nwac246
Google Scholar
[21] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林 2022 物理学报 71 050701
Google Scholar
Xu S Z, Xie S M, Wu D, Chi Z H, Huang L 2022 Acta Phys. Sin. 71 050701
Google Scholar
[22] Wu W H, Yang P F, Zhai W, Wei B B 2019 Chin. Phys. Lett. 36 084302
Google Scholar
[23] Li P Q, Li Z L, Zhou W, Wang S W, Meng L, Peng Y G, Chen Z, Zheng H R, Zhu X F 2022 Adv. Funct. Mater. 32 2203109
Google Scholar
[24] Zeng L S, Lin Z B, Li Z L, Yang Y, Hu Y, Chen Z, Peng Y G, Ma T, Zheng H R, Zhu X F 2025 Adv. Mater. 37 202420229
[25] Yang X, Zhang Z H, Xu M W, Li S X, Zhang Y H, Zhu X F, Ouyang X P, Alù A 2024 Nat. Commun. 15 4346
Google Scholar
[26] Zhao C Y, Wu K, Liu J J, Liang B, Cheng J C 2025 Phys. Rev. Appl. 23 034053
Google Scholar
[27] Chen A, Xia Y F, Chen Z X, Su H J, Liu J J, Yang J, Zhu X F, Liang B, Cheng J C 2025 Adv. Funct. Mater. 35 202425833
计量
- 文章访问数: 225
- PDF下载量: 3
- 被引次数: 0