搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层运动模型的楼梯行人群体仿真

陈群 喻亚文

引用本文:
Citation:

基于双层运动模型的楼梯行人群体仿真

陈群, 喻亚文

Simulation of pedestrian groups on stairs based on a Dual-layer motion model

Chen Qun, Yu Yawen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 现有模型因忽略三维几何约束与动态交互效应,难以准确模拟复杂楼梯场景下的群体行为。本文提出一种双层运动模型,通过分层建模方法融合三维元胞离散化空间、双足步态动力学及接触力扰动分析。模型将行人抽象为“双足一点”多节点系统,构建上层质心运动空间与下层双足支撑平面。模型下层基于元胞路径规划约束跨步运动,并设计准同步状态切换机制保障群体时空一致性;上层采用几何检测算法识别行人物理接触,结合碰撞动力学模型,量化接触冲突对行人稳定性的影响。仿真实验表明,模型能够有效模拟行人上下楼运动轨迹、动态平衡维持机制及失稳事件演化过程。研究采用稳定裕度评估行人间接触力的扰动效应,揭示了密度对失稳风险的正向影响,为楼梯场景下的安全评估与疏散优化提供了高效仿真工具。
    This study addresses the critical challenge of simulating pedestrian crowd dynamics in staircase environments, where existing models often neglect three-dimensional geometric constraints and dynamic interactions. We propose a novel dual-layer motion model (DLM) that integrates a hierarchical kinematic-dynamic coupling framework, geometric discretization methods, and crowd interaction mechanisms. The model abstracts pedestrians as a multi-node "dual-foot and single-point" system, distinguishing between an upper-layer centroid motion plane and a lower-layer dual-foot support space. This approach combines spatiotemporal modeling and contact mechanics to address the complexity of stairwell dynamics. The lower layer employs cellular path planning to constrain stepping motions and ensures spatiotemporal consistency of the crowd through a quasi-synchronous state transition mechanism. The upper layer utilizes an ellipse-projection-based separating axis algorithm to detect collision conflicts and quantifies contact effects using collision dynamics. Additionally, a quasi-synchronous state migration mechanism is introduced within a hybrid discrete-continuous time framework to coordinate gait cycles in large-scale multi-agent simulations, resolving temporal asynchrony. Based on the stability control principle of inverted pendulum dynamics, combined with biomechanical regulation capabilities and motion threshold constraints, the perturbation effects of contact forces on pedestrian balance are quantified, enabling individual dynamic stability analysis.
    To validate the model, parameterized stairwell scenarios (step height: 0.15 m, tread depth: 0.26 m) were constructed to simulate the motion of heterogeneous pedestrians (mass: 65±5 kg, height: 1.70±0.2 m). Simulation results demonstrate that the model accurately captures dynamic features of pedestrian motion in stairwells: the centroid displacement ratio aligns closely with the theoretical stair slope, and the crowd’s average velocity deviates by less than 6% from empirical data. Dynamic stability analysis reveals the evolution from individual local imbalance to group instability. Further parametric studies indicate that balancing target attraction weight (α) and repulsion weight (β) regulates crowd behavioral cohesion, while increasing the collision restitution coefficient (e) amplifies contact force fluctuations.
    In conclusion, the dual-layer model bridges motion planning and dynamic stability in stairwell environments, offering high-fidelity insights into pedestrian safety. The results emphasize the interdependence of geometric constraints, biomechanical adjustments, and density-driven instability. Future research may extend the model to irregular stair geometries and incorporate heterogeneous pedestrian parameters to enhance predictive accuracy for evacuation optimization and architectural safety design.
  • [1]

    Yu E D, Wu Z, Guo M M 2014Acta Phya Sin. 63 217(禹尔东,吴正,郭明旻2014物理学报63 217)

    [2]

    Golshani F, Fang L 2025 Int. J. Disaster Risk Reduct. 118 105259

    [3]

    Yang C, Chen Q, Chen L 2019Acta Phys. Sin. 68 87(杨灿,陈群,陈璐2019物理学报68 87)

    [4]

    Shao Y, Yang Y, Ng S T, Xing J, Kwok C Y 2025 J. Constr. Eng. Manag. 151 111079

    [5]

    Hughes R L 2003 Annu. Rev. Fluid Mech. 35 169

    [6]

    Liang H, Du J, Wong S C 2021 Transp. Res. Part B Methodol. 149 100

    [7]

    Helbing D, Molnár P 1995 Phys. Rev. E 51 4282

    [8]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [9]

    Zhao R Y, Wei B Y, Han C F, Jia P, Zhu W J, Li C L, Ma Y L 2025 IEEE Trans. Intell. Transp. Syst. 26 1840

    [10]

    Bazior G, Wks J, Palka D 2025 Expert Syst. Appl. 272 126775

    [11]

    Hu J, You L 2014Acta Phys. Sin. 63 69(胡俊,游磊2014物理学报63 69)

    [12]

    Yong G, Huang H J, Xu Y 2013Acta Phys. Sin. 62 74(永贵,黄海军,许岩2013物理学报62 74)

    [13]

    Saka A A 2001 J. Transp. Eng. 127 195

    [14]

    Dong L Y, Chen L, Duan X Y 2015Acta Phys. Sin. 64 103(董力耘, 陈立, 段晓茵2015 物理学报 64 103)

    [15]

    Jin Z R, Ruan X, Li Y 2018 J. J. Tongji Univ. (Nat. Sci.) 46 1026(金泽人, 阮欣, 李越2018 同济大学学报(自然科学版)46 1026)

    [16]

    Chen J, Ma J, Lo S M 2018 Physica A 505 1212

    [17]

    Li K, Chen Z Y 2024 Phys Lett. A 528 130059

    [18]

    Pareschi L, Vellucci P, Zanella M 2017 Physica A 467 201

    [19]

    Lu P, Li Y 2025 Reliab. Eng. Syst. Saf. 260 111000

    [20]

    Wang Y Y, Ge J Q, Comber A 2025 J. Comput. Soc. Sci. 8 49

    [21]

    Jin H, Guo R Y 2019Acta Phys Sin. 68 38(金辉, 郭仁拥2019 物理学报 68 38)

    [22]

    Wang J, Ma J, Sarvi M, Chen T, Hu X 2023 Saf. Sci. 159 106031

    [23]

    Huo F Z, Song W G, Lv W, Liew K M 2014 Simul. Trans. Soc. Model. Simul. Int. 90 501

    [24]

    Huang Z Y, Chraibi M, Song W G 2018 Phys. Rev. E 98 042309

    [25]

    Shang X Y, Jiang R, Wong S, Gao Z Y, Weng W G 2024 Transp. Res. Part C Emerg. Technol. 158 104446

    [26]

    Fujiyama T, and Tyler N 2010Transp. Plan. Technol. 33 177

    [27]

    Wang C, Ni S, Weng W 2019Physica A 531 121781

    [28]

    Xu S, Yang Z, Wang D, Zhang S, Lu J, Lin J, Ning G 2023 Comput. Methods Biomech. Biomed. Eng. 26 1044

    [29]

    Hof A L, Gazendam M G J, Sinke W E 2005J. Biomech. 665 1873

    [30]

    Tong L, Chen W, Song Q, Ge Y 2009IEEE Int. Conf. Robot. Biomimetics 19 949

    [31]

    State Administration for Market Regulation, https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B19DCCA575D9406856ABF87A511EE11F [2025-5-19]

    [32]

    Ministry of Housing and Urban-Rural Development, https://www.gov.cn/zhengce/zhengceku/2023-01/30/content_5739161.htm, [2025-5-19]

    [33]

    Zhang L, Wu X, Lin H, Zhang M, Liu Y 2024Sci. Rep. 14 26182

  • [1] 张销杰, 赵千千, 黄荣宗. 流固耦合传热作用下两颗粒拖曳-接触-翻滚运动研究. 物理学报, doi: 10.7498/aps.74.20241453
    [2] 王潇, 宋世琦, 平子健, 盛思源, 商宪义, 陈凡秀. 基于micro-CT实验的颗粒体系接触力计算及演化分析. 物理学报, doi: 10.7498/aps.74.20241206
    [3] 巴图巴雅尔·欧赟, 赵跃进, 孔令琴, 董立泉, 刘明, 惠梅. 头部旋转运动下自适应非接触鲁棒性心率检测方法. 物理学报, doi: 10.7498/aps.71.20211634
    [4] 金辉, 郭仁拥. 基于元胞传输模型的楼梯区域行人运动. 物理学报, doi: 10.7498/aps.68.20180912
    [5] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, doi: 10.7498/aps.67.20171441
    [6] 张磊, 岳昊, 李梅, 王帅, 米雪玉. 拥堵疏散的行人拥挤力仿真研究. 物理学报, doi: 10.7498/aps.64.060505
    [7] 段敏, 高辉, 宋永端. 智能群体环绕运动控制. 物理学报, doi: 10.7498/aps.63.140204
    [8] 王自强, 钟敏成, 周金华, 李银妹. 基于自回归模型的光阱中粒子运动模拟. 物理学报, doi: 10.7498/aps.62.188701
    [9] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, doi: 10.7498/aps.62.130204
    [10] 丁光涛. 磁场中带电粒子阻尼运动的分析力学表示. 物理学报, doi: 10.7498/aps.61.020204
    [11] 刘宁波, 关键, 黄勇, 王国庆, 何友. 海杂波的分段分数布朗运动模型. 物理学报, doi: 10.7498/aps.61.190503
    [12] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型. 物理学报, doi: 10.7498/aps.59.3817
    [13] 罗质华, 余超凡. 一维分子晶体激子-孤子运动的激子运动学和动力学非线性效应. 物理学报, doi: 10.7498/aps.57.3720
    [14] 鲁录义, 顾兆林, 罗昔联, 雷康斌. 一种风沙运动的颗粒动力学静电起电模型. 物理学报, doi: 10.7498/aps.57.6939
    [15] 马天宝, 胡元中, 王 慧. 基于原子运动模型的类金刚石薄膜生长机理研究. 物理学报, doi: 10.7498/aps.56.480
    [16] 王忠纯. Tavis-Cummings模型中原子运动时光场的非经典特性. 物理学报, doi: 10.7498/aps.55.192
    [17] 张相武. 完整力学系统的高阶运动微分方程. 物理学报, doi: 10.7498/aps.54.3978
    [18] 刘小娟, 方卯发, 周清平. 具有原子运动的双光子J-C模型中量子力学通道与量子互熵. 物理学报, doi: 10.7498/aps.54.703
    [19] 张竞上, 卓益忠. 双阱-集团壳模型中的质心运动伪态. 物理学报, doi: 10.7498/aps.25.292
    [20] 张宗燧. 李模型中极点的运动. 物理学报, doi: 10.7498/aps.21.1882
计量
  • 文章访问数:  37
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-21

/

返回文章
返回