-
现有模型因忽略三维几何约束与动态交互效应,难以准确模拟复杂楼梯场景下的群体行为。本文提出一种双层运动模型,通过分层建模方法融合三维元胞离散化空间、双足步态动力学及接触力扰动分析。模型将行人抽象为“双足一点”多节点系统,构建上层质心运动空间与下层双足支撑平面。模型下层基于元胞路径规划约束跨步运动,并设计准同步状态切换机制保障群体时空一致性;上层采用几何检测算法识别行人物理接触,结合碰撞动力学模型,量化接触冲突对行人稳定性的影响。仿真实验表明,模型能够有效模拟行人上下楼运动轨迹、动态平衡维持机制及失稳事件演化过程。研究采用稳定裕度评估行人间接触力的扰动效应,揭示了密度对失稳风险的正向影响,为楼梯场景下的安全评估与疏散优化提供了高效仿真工具。This study addresses the critical challenge of simulating pedestrian crowd dynamics in staircase environments, where existing models often neglect three-dimensional geometric constraints and dynamic interactions. We propose a novel dual-layer motion model (DLM) that integrates a hierarchical kinematic-dynamic coupling framework, geometric discretization methods, and crowd interaction mechanisms. The model abstracts pedestrians as a multi-node "dual-foot and single-point" system, distinguishing between an upper-layer centroid motion plane and a lower-layer dual-foot support space. This approach combines spatiotemporal modeling and contact mechanics to address the complexity of stairwell dynamics. The lower layer employs cellular path planning to constrain stepping motions and ensures spatiotemporal consistency of the crowd through a quasi-synchronous state transition mechanism. The upper layer utilizes an ellipse-projection-based separating axis algorithm to detect collision conflicts and quantifies contact effects using collision dynamics. Additionally, a quasi-synchronous state migration mechanism is introduced within a hybrid discrete-continuous time framework to coordinate gait cycles in large-scale multi-agent simulations, resolving temporal asynchrony. Based on the stability control principle of inverted pendulum dynamics, combined with biomechanical regulation capabilities and motion threshold constraints, the perturbation effects of contact forces on pedestrian balance are quantified, enabling individual dynamic stability analysis.
To validate the model, parameterized stairwell scenarios (step height: 0.15 m, tread depth: 0.26 m) were constructed to simulate the motion of heterogeneous pedestrians (mass: 65±5 kg, height: 1.70±0.2 m). Simulation results demonstrate that the model accurately captures dynamic features of pedestrian motion in stairwells: the centroid displacement ratio aligns closely with the theoretical stair slope, and the crowd’s average velocity deviates by less than 6% from empirical data. Dynamic stability analysis reveals the evolution from individual local imbalance to group instability. Further parametric studies indicate that balancing target attraction weight (α) and repulsion weight (β) regulates crowd behavioral cohesion, while increasing the collision restitution coefficient (e) amplifies contact force fluctuations.
In conclusion, the dual-layer model bridges motion planning and dynamic stability in stairwell environments, offering high-fidelity insights into pedestrian safety. The results emphasize the interdependence of geometric constraints, biomechanical adjustments, and density-driven instability. Future research may extend the model to irregular stair geometries and incorporate heterogeneous pedestrian parameters to enhance predictive accuracy for evacuation optimization and architectural safety design.-
Keywords:
- Staircase pedestrian dynamics /
- Dual-layer motion model /
- Crowd simulation /
- Contact mechanics
-
[1] Yu E D, Wu Z, Guo M M 2014Acta Phya Sin. 63 217(禹尔东,吴正,郭明旻2014物理学报63 217)
[2] Golshani F, Fang L 2025 Int. J. Disaster Risk Reduct. 118 105259
[3] Yang C, Chen Q, Chen L 2019Acta Phys. Sin. 68 87(杨灿,陈群,陈璐2019物理学报68 87)
[4] Shao Y, Yang Y, Ng S T, Xing J, Kwok C Y 2025 J. Constr. Eng. Manag. 151 111079
[5] Hughes R L 2003 Annu. Rev. Fluid Mech. 35 169
[6] Liang H, Du J, Wong S C 2021 Transp. Res. Part B Methodol. 149 100
[7] Helbing D, Molnár P 1995 Phys. Rev. E 51 4282
[8] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[9] Zhao R Y, Wei B Y, Han C F, Jia P, Zhu W J, Li C L, Ma Y L 2025 IEEE Trans. Intell. Transp. Syst. 26 1840
[10] Bazior G, Wks J, Palka D 2025 Expert Syst. Appl. 272 126775
[11] Hu J, You L 2014Acta Phys. Sin. 63 69(胡俊,游磊2014物理学报63 69)
[12] Yong G, Huang H J, Xu Y 2013Acta Phys. Sin. 62 74(永贵,黄海军,许岩2013物理学报62 74)
[13] Saka A A 2001 J. Transp. Eng. 127 195
[14] Dong L Y, Chen L, Duan X Y 2015Acta Phys. Sin. 64 103(董力耘, 陈立, 段晓茵2015 物理学报 64 103)
[15] Jin Z R, Ruan X, Li Y 2018 J. J. Tongji Univ. (Nat. Sci.) 46 1026(金泽人, 阮欣, 李越2018 同济大学学报(自然科学版)46 1026)
[16] Chen J, Ma J, Lo S M 2018 Physica A 505 1212
[17] Li K, Chen Z Y 2024 Phys Lett. A 528 130059
[18] Pareschi L, Vellucci P, Zanella M 2017 Physica A 467 201
[19] Lu P, Li Y 2025 Reliab. Eng. Syst. Saf. 260 111000
[20] Wang Y Y, Ge J Q, Comber A 2025 J. Comput. Soc. Sci. 8 49
[21] Jin H, Guo R Y 2019Acta Phys Sin. 68 38(金辉, 郭仁拥2019 物理学报 68 38)
[22] Wang J, Ma J, Sarvi M, Chen T, Hu X 2023 Saf. Sci. 159 106031
[23] Huo F Z, Song W G, Lv W, Liew K M 2014 Simul. Trans. Soc. Model. Simul. Int. 90 501
[24] Huang Z Y, Chraibi M, Song W G 2018 Phys. Rev. E 98 042309
[25] Shang X Y, Jiang R, Wong S, Gao Z Y, Weng W G 2024 Transp. Res. Part C Emerg. Technol. 158 104446
[26] Fujiyama T, and Tyler N 2010Transp. Plan. Technol. 33 177
[27] Wang C, Ni S, Weng W 2019Physica A 531 121781
[28] Xu S, Yang Z, Wang D, Zhang S, Lu J, Lin J, Ning G 2023 Comput. Methods Biomech. Biomed. Eng. 26 1044
[29] Hof A L, Gazendam M G J, Sinke W E 2005J. Biomech. 665 1873
[30] Tong L, Chen W, Song Q, Ge Y 2009IEEE Int. Conf. Robot. Biomimetics 19 949
[31] State Administration for Market Regulation, https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B19DCCA575D9406856ABF87A511EE11F [2025-5-19]
[32] Ministry of Housing and Urban-Rural Development, https://www.gov.cn/zhengce/zhengceku/2023-01/30/content_5739161.htm, [2025-5-19]
[33] Zhang L, Wu X, Lin H, Zhang M, Liu Y 2024Sci. Rep. 14 26182
计量
- 文章访问数: 37
- PDF下载量: 3
- 被引次数: 0