搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2改性黏接层对PZT MFC/Metglas磁电复合材料磁发射性能的增强机制

尤世越 秦智 马亮 石登财 沈杰 金伟 周静

引用本文:
Citation:

MoS2改性黏接层对PZT MFC/Metglas磁电复合材料磁发射性能的增强机制

尤世越, 秦智, 马亮, 石登财, 沈杰, 金伟, 周静

Enhancement mechanism of magnetic emission performance of PZT MFC/Metglas magnetoelectric composites by MoS2-modified adhesive layer

YOU Shiyue, QIN Zhi, MA Liang, SHI Dengcai, SHEN Jie, JIN Wei, ZHOU Jing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对传统低频电天线存在的体积庞大与高功耗问题, 基于压电谐振原理的磁电天线展现出显著的优势. 然而, 磁电复合材料中的黏接层与压电相、铁磁相之间的声学阻抗失配现象, 严重阻碍了磁-机-电耦合过程中的应力传递效率, 进而限制了磁电复合材料的磁辐射强度. 为提升磁发射性能, 本文设计了一种高界面应力传递特性的磁电复合材料, 其具有类三明治的结构, 由Pb(Zr, Ti)O3压电纤维复合材料(macro fiber composite, MFC)压电层、均匀填充MoS2的环氧树脂黏接层, 以及FeBSi(Metglas)磁致伸缩层组成. 通过向黏接层引入二维填料MoS2, 有效改善了黏接层与铁电相、铁磁相之间的声阻抗匹配特性. 系统研究了MoS2填充量对PZT MFC/Metglas磁电复合材料磁发射强度的影响规律. 实验结果表明, 当MoS2填充质量分数为1%时, 该复合材料在最佳偏置磁场条件下的磁发射强度达到了331 μT, 相较于未填充MoS2的磁电复合材料提升了1.5倍; 在距离发射源1 m处, 磁发射强度可达2.7 nT. 结合声阻抗匹配理论, 深入探讨了电-机-磁耦合过程中的应力传递机制. 此外, 通过采用幅移键控调制技术, 验证了基于MoS2改性的PZT MFC/Metglas磁电复合材料在信号无损传输方面的有效性. 本研究提出的黏接层优化方法, 为通过增强应力传递效率提升磁电响应性能提供了一种简便高效的技术途径, 同时为低频水下通信、地下传感以及分布式无线网络等小型通信系统的发展提供了新的技术方案与理论支撑.
    The magnetoelectric (ME) antenna based on the piezoelectric resonance principle can solve the problems of large size and high power consumption of traditional low-frequency electrical antennas. However, the acoustic impedance mismatch between the adhesive layer in the magnetoelectric composite and the piezoelectric and ferromagnetic phases significantly hinders the stress transfer in the magneto-mechanical-electric coupling process, ultimately limiting the magnetic radiation intensity of the magnetoelectric composite. To improve the magnetic emission performance of the PZT MFC/Metglas magnetoelectric composite, in this work, the two-dimensional filler MoS2 is adopted to fill and modify the adhesive layer of the PZT MFC/Metglas magnetoelectric composite, aiming to improve the acoustic impedance match between the adhesive layer and the ferroelectric and ferromagnetic phases. The influence of the MoS2 content on the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite is systematically studied. The results show that when the filling weight percent of MoS2 is 1%, the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite can reach 331 μT under the optimal bias, which is 1.5 times higher than that of the magnetoelectric composite without MoS2 filling. At a distance of 1 m, the magnetic emission intensity can reach 2.7 nT. The stress wave transfer mechanism in the electro-mechanical-magnetic coupling is discussed in conjunction with acoustic impedance matching theory. In addition, the amplitude shift keying modulation method demonstrates the lossless signal transmission capability of the magnetoelectric antenna composed of MoS2-modified PZT MFC/Metglas magnetoelectric composite. This method of optimizing the interfacial adhesive layer is simple and effective to expand the magnetoelectric response by increasing the stress wave transfer efficiency. Meanwhile, it provides a feasible solution for communication systems such as low-frequency underwater communication, underground sensing, and distributed wireless networks.
  • 图 1  MoS2填充环氧树脂黏接层及磁电复合材料的制备流程图

    Fig. 1.  Schematic of the preparation of MoS2-filled epoxy adhesive layer and the synthesis process of the magnetoelectric (ME) composite.

    图 2  (a)不同MoS2填充量黏接层的XRD图谱; (b)填充前后黏接层FT-IR光谱图; (c)不同MoS2填充量黏接层的TGA曲线

    Fig. 2.  (a) XRD patterns of the adhesive layers with different filling contents of MoS2; (b) FT-IR spectrograms of the adhesive layer before and after filling; (c) thermogravimetric curves of the adhesive layers with different filling contents of MoS2.

    图 3  不同MoS2填充质量分数黏接层的断面SEM图像 (a) 0%; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%

    Fig. 3.  SEM of fracture surface of MoS2/epoxy composite with different weight percent of MoS2: (a) Pure epoxy; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%.

    图 4  不同MoS2填充量黏接层 (a)应力-应变曲线; (b)杨氏模量

    Fig. 4.  Adhesive layers with different filling contents of MoS2: (a) Stress-strain curves; (b) Young’s modulus

    图 5  不同MoS2填充量的黏接层 (a) DSC曲线; (b)储能模量曲线

    Fig. 5.  Adhesive layers with different filling contents of MoS2: (a) DSC curves; (b) storage modulus curves.

    图 6  不同质量分数的MoS2填充磁电复合材料在不同偏置下的磁发射性能扫频曲线 (a)环氧树脂; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%

    Fig. 6.  Sweep frequency curves of the magnetic emission intensity of ME composite with different MoS2 filling contents (weight percent) under different bias conditions: (a) Pure epoxy; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%.

    图 7  (a)最佳偏置下不同MoS2填充量的磁电复合材料扫频曲线; (b)最佳偏置下磁电复合材料的磁发射强度随MoS2填充量的变化; (c)不同MoS2填充量磁电复合材料在最佳偏置下的磁发射强度随电压的变化

    Fig. 7.  (a) Sweep frequency curves of ME composites with different MoS2 filling contents under optimal bias conditions; (b) variation of magnetic emission intensity of ME composite with different MoS2 filling contents under optimal bias conditions; (c) variation of magnetic emission intensity of ME composite with voltage under optimal bias conditions.

    图 8  (a)黏接层杨氏模量随MoS2填充量的变化; (b)黏接层密度随MoS2填充量的变化曲线; (c)黏接层声学阻抗随MoS2填充量变化曲线

    Fig. 8.  (a) Young’s modulus curves of the adhesive layers with different MoS2 filling contents; (b) density curves of the adhesive layers with different MoS2 filling contents; (c) acoustic impedance curves of the adhesive layers with different MoS2 filling contents.

    图 9  最佳偏置下MoS2填充前后磁电复合材料 (a)近场辐射特性; (b)磁场强度随实测距离变化曲线

    Fig. 9.  Magnetoelectric composites before and after MoS2 filling under the optimal bias: (a) Near-field radiation characteristics; (b) Curves of the magnetic field intensity changing with the measured distance.

    图 10  (a)磁电复合材料调制测量装置的示意图; (b)通过ASK方法调制1 Hz比特流

    Fig. 10.  (a) Schematic diagram of the measurement setup for digital data transmission; (b) 1 Hz bit stream modulated by ASK method.

    表 1  不同MoS2填充量黏接层的密度、杨氏模量、声阻抗、声学透射系数

    Table 1.  Density, Young’s modulus, acoustic impedance, and acoustic transmission coefficient of adhesive layers with different filling contents.

    Samples
    (epoxy/MoS2)
    Density
    /(g·cm–3)
    Young’s
    modulus
    /GPa
    Z
    /MRayls)
    T
    epoxy 1.26 3.01 1.95 0.077
    0.5% 1.29 4.36 2.38 0.107
    1% 1.32 5.56 2.70 0.132
    1.5% 1.34 4.12 2.34 0.101
    2% 1.35 2.70 1.90 0.074
    PZT-5 H 7.61 56 20.63
    Metglas 7.82 100 27.93
    下载: 导出CSV

    表 2  本工作与已报道的磁电天线辐射性能比较

    Table 2.  Comparison of the radiation performance of this work with the reported ME antennas.

    年份 材料体系 发射器体积/cm3 工作频率/kHz 辐射能力 单位体积辐射能力
    202023 PZT 50.3 33.23 40 fT at 6 m 0.8 fT/cm3 @6 m
    202224 PZT/Metglas 0.45 6.3 1 nT at 0.4 m 2.2 nT/cm3 @0.4 m
    202325 PZT/Metglas 69 22.23 6 pT at 5.5 m 0.09 pT/cm3 @5.5 m
    202014 PZT/Metglas 0.33 23.95 10 fT at 120 m 30 fT/cm3 @120 m
    202326 PZT/Metglas 0.56 17.9 1 nT at 1.4 m 1.79 nT/cm3 @1.4 m
    202427 PZT/Ni/Metglas 0.16 24.47 2.4 pT at 3 m 15 pT/cm3@3 m
    本工作 PZT-5 H/Metglas 0.07 12.51 2.7 nT at 1 m 38.6 nT/cm3 @1 m
    下载: 导出CSV
  • [1]

    崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 208401Google Scholar

    Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys. Sin. 69 208401Google Scholar

    [2]

    Yang S, Geng J, Zhou H, Wang K, Zhao X, Lu J, Zhao R, Tang X, Zhang Y, Su D, Zhang A, Li H, Jin R 2023 IEEE Trans. Antennas Propag. 71 2082Google Scholar

    [3]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [4]

    宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 褚昭强 2022 物理学报 71 247502Google Scholar

    Song K X, Min S G, Gao J Q, Zhang S J, Mao Z N, Shen Y, Chu Z Q 2022 Acta Phys. Sin. 71 247502Google Scholar

    [5]

    聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin, 汪尧进 2021 物理学报 70 247501Google Scholar

    Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov O, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501Google Scholar

    [6]

    Chu Z, Yu C, Dan W, Jiang S, Ren Y, Dong K, Dong S 2024 Appl. Phys. Lett. 124 072901Google Scholar

    [7]

    Li W, Li D, Zhou K, Fu Q, Yuan X, Zhu X 2023 IEEE Trans. Antennas Propag. 71 263Google Scholar

    [8]

    Cheng Z, Zhou J, Wang B, Wu Q, Ma L, Qin Z, Shen J, Chen W, Peng W, Chang J, Ci P, Dong S 2024 Adv. Sci. 11 2403746Google Scholar

    [9]

    Cui Y, Wang C, Song X, Wu M, Zhang Q, Yuan H, Yuan Z 2023 iScience 26 105832Google Scholar

    [10]

    Niu Y, Ren H 2022 IEEE Sens. J. 22 14008Google Scholar

    [11]

    Liu K, Qin Z, Shen J, Cheng Z, You S, Ma L, Zhou J, Chen W 2024 Nano Res. 17 6630Google Scholar

    [12]

    Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P 2023 IEEE Antennas Wirel. Propag. Lett. 22 34Google Scholar

    [13]

    Chang J, He Z, Xu S, Zheng X, Peng W, Ci P, Wang B, Zhang C, Dong S 2024 Adv. Mater. 36 2309159Google Scholar

    [14]

    Dong C, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Lett. 19 398Google Scholar

    [15]

    Silva M, Reis S, Lehmann C S, Martins P, Lanceros Mendez S, Lasheras A, Gutiérrez J, Barandiarán J M 2013 ACS Appl. Mater. Interfaces 5 10912Google Scholar

    [16]

    Hwang G T, Palneedi H, Jung B M, Kwon S J, Peddigari M, Min Y, Kim J W, Ahn C W, Choi J J, Hahn B D, Choi J H, Yoon W H, Park D S, Lee S B, Choe Y, Kim K H, Ryu J 2018 ACS Appl. Mater. Interfaces 10 32323Google Scholar

    [17]

    Kim S H, Thakre A, Patil D R, Park S H, Listyawan T A, Park N, Hwang G T, Jang J, Kim K H, Ryu J 2021 ACS Appl. Mater. Interfaces 13 19983Google Scholar

    [18]

    Wong C M, Chan S F, Wu W C, Suen C H, Yau H M, Wang D Y, Li S, Dai J Y 2021 Ultrasonics 116 106506Google Scholar

    [19]

    Madeshwaran S R, Jayaganthan R, Velmurugan R, Gupta N K, Manzhirov A V 2018 J. Phys. Conf. Ser. 991 012054Google Scholar

    [20]

    Zhou J, Zhou J, Chen W, Tian J, Shen J, Zhang P 2022 Compos. Struct. 299 116019Google Scholar

    [21]

    Liang J Z 2013 Composites Part B. 51 224Google Scholar

    [22]

    Krautkrämer J, Krautkrämer H 2013 Ultrasonic testing of materials (New York: Springer Science & Business Media

    [23]

    Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006Google Scholar

    [24]

    Hu L, Zhang Q, Wu H, You H, Jiao J, Luo H, Wang Y, Duan C, Gao A 2022 J. Phys. Condens. Matter 34 414002Google Scholar

    [25]

    Du Y, Xu Y, Wu J, Qiao J, Wang Z, Hu Z, Jiang Z, Liu M 2023 IEEE Trans. Antennas Propag. 71 2167Google Scholar

    [26]

    Fu S, Cheng J, Jiang T, Wu H, Fang Z, Jiao J, Sokolov O, Ivanov S, Bichurin M, Wang Y 2023 Appl. Phys. Lett. 122 262901Google Scholar

    [27]

    Leung C M, Zheng H, Yang J, Wang T, Wang F 2024 Sensors 24 694Google Scholar

  • [1] 邱发生, 曾宇帆, 肖树坤, 殷晓芳, 郭朝阳. 应力对磁声发射和磁畴运动特性的影响. 物理学报, doi: 10.7498/aps.74.20250376
    [2] 李婷, 吴丰民, 张同涛, 王军军, 杨彬, 章东. 基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器. 物理学报, doi: 10.7498/aps.72.20231047
    [3] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, doi: 10.7498/aps.69.20191730
    [4] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, doi: 10.7498/aps.68.20190350
    [5] 邓东阁, 左苏, 武新军. 基于表面磁感应强度的铁磁构件应力恒磁表征方法. 物理学报, doi: 10.7498/aps.67.20180560
    [6] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, doi: 10.7498/aps.67.20172307
    [7] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响. 物理学报, doi: 10.7498/aps.67.20172198
    [8] 桑永杰, 蓝宇, 丁玥文. Helmholtz水声换能器弹性壁液腔谐振频率研究. 物理学报, doi: 10.7498/aps.65.024301
    [9] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统. 物理学报, doi: 10.7498/aps.62.058503
    [10] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, doi: 10.7498/aps.62.017501
    [11] 鲍丙豪, 骆英. 有限输入阻抗下压电/磁伸层叠材料磁电效应理论及实验. 物理学报, doi: 10.7498/aps.60.017508
    [12] 王巍, 罗小彬, 杨丽洁, 张宁. 层状磁电复合材料谐振频率下的巨磁电容效应. 物理学报, doi: 10.7498/aps.60.107702
    [13] 张延芳, 文玉梅, 李平, 卞雷祥. 采用阶梯形弹性基底的磁致伸缩/压电复合结构磁电响应研究. 物理学报, doi: 10.7498/aps.58.546
    [14] 高剑森, 张宁. 异型磁体/铁电复合材料中的电致变磁导及电致变阻抗效应. 物理学报, doi: 10.7498/aps.58.8607
    [15] 毛义军, 祁大同. 开口/封闭薄壳体声辐射和散射的统一边界积分方程解法. 物理学报, doi: 10.7498/aps.58.6764
    [16] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, doi: 10.7498/aps.55.3766
    [17] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, doi: 10.7498/aps.54.3872
    [18] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, doi: 10.7498/aps.53.2766
    [19] 张武, 王燕. 光学非均匀单向纤维复合材料的应力光学行为. 物理学报, doi: 10.7498/aps.43.1192
    [20] 李明轩. 声阻法中检测阻抗的测量和提高检测器灵敏度的设计. 物理学报, doi: 10.7498/aps.23.3-2
计量
  • 文章访问数:  210
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-05-17
  • 上网日期:  2025-06-06

/

返回文章
返回