-
针对传统低频电天线存在的体积庞大与高功耗问题, 基于压电谐振原理的磁电天线展现出显著的优势. 然而, 磁电复合材料中的黏接层与压电相、铁磁相之间的声学阻抗失配现象, 严重阻碍了磁-机-电耦合过程中的应力传递效率, 进而限制了磁电复合材料的磁辐射强度. 为提升磁发射性能, 本文设计了一种高界面应力传递特性的磁电复合材料, 其具有类三明治的结构, 由Pb(Zr, Ti)O3压电纤维复合材料(macro fiber composite, MFC)压电层、均匀填充MoS2的环氧树脂黏接层, 以及FeBSi(Metglas)磁致伸缩层组成. 通过向黏接层引入二维填料MoS2, 有效改善了黏接层与铁电相、铁磁相之间的声阻抗匹配特性. 系统研究了MoS2填充量对PZT MFC/Metglas磁电复合材料磁发射强度的影响规律. 实验结果表明, 当MoS2填充质量分数为1%时, 该复合材料在最佳偏置磁场条件下的磁发射强度达到了331 μT, 相较于未填充MoS2的磁电复合材料提升了1.5倍; 在距离发射源1 m处, 磁发射强度可达2.7 nT. 结合声阻抗匹配理论, 深入探讨了电-机-磁耦合过程中的应力传递机制. 此外, 通过采用幅移键控调制技术, 验证了基于MoS2改性的PZT MFC/Metglas磁电复合材料在信号无损传输方面的有效性. 本研究提出的黏接层优化方法, 为通过增强应力传递效率提升磁电响应性能提供了一种简便高效的技术途径, 同时为低频水下通信、地下传感以及分布式无线网络等小型通信系统的发展提供了新的技术方案与理论支撑.
-
关键词:
- PZT MFC/Metglas磁电复合材料 /
- 磁发射强度 /
- 应力传递 /
- 声阻抗
The magnetoelectric (ME) antenna based on the piezoelectric resonance principle can solve the problems of large size and high power consumption of traditional low-frequency electrical antennas. However, the acoustic impedance mismatch between the adhesive layer in the magnetoelectric composite and the piezoelectric and ferromagnetic phases significantly hinders the stress transfer in the magneto-mechanical-electric coupling process, ultimately limiting the magnetic radiation intensity of the magnetoelectric composite. To improve the magnetic emission performance of the PZT MFC/Metglas magnetoelectric composite, in this work, the two-dimensional filler MoS2 is adopted to fill and modify the adhesive layer of the PZT MFC/Metglas magnetoelectric composite, aiming to improve the acoustic impedance match between the adhesive layer and the ferroelectric and ferromagnetic phases. The influence of the MoS2 content on the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite is systematically studied. The results show that when the filling weight percent of MoS2 is 1%, the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite can reach 331 μT under the optimal bias, which is 1.5 times higher than that of the magnetoelectric composite without MoS2 filling. At a distance of 1 m, the magnetic emission intensity can reach 2.7 nT. The stress wave transfer mechanism in the electro-mechanical-magnetic coupling is discussed in conjunction with acoustic impedance matching theory. In addition, the amplitude shift keying modulation method demonstrates the lossless signal transmission capability of the magnetoelectric antenna composed of MoS2-modified PZT MFC/Metglas magnetoelectric composite. This method of optimizing the interfacial adhesive layer is simple and effective to expand the magnetoelectric response by increasing the stress wave transfer efficiency. Meanwhile, it provides a feasible solution for communication systems such as low-frequency underwater communication, underground sensing, and distributed wireless networks.-
Keywords:
- PZT MFC/Metglas magnetoelectric composite /
- magnetic emission intensity /
- stress transfer /
- acoustic impedance
-
图 2 (a)不同MoS2填充量黏接层的XRD图谱; (b)填充前后黏接层FT-IR光谱图; (c)不同MoS2填充量黏接层的TGA曲线
Fig. 2. (a) XRD patterns of the adhesive layers with different filling contents of MoS2; (b) FT-IR spectrograms of the adhesive layer before and after filling; (c) thermogravimetric curves of the adhesive layers with different filling contents of MoS2.
图 6 不同质量分数的MoS2填充磁电复合材料在不同偏置下的磁发射性能扫频曲线 (a)环氧树脂; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%
Fig. 6. Sweep frequency curves of the magnetic emission intensity of ME composite with different MoS2 filling contents (weight percent) under different bias conditions: (a) Pure epoxy; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%.
图 7 (a)最佳偏置下不同MoS2填充量的磁电复合材料扫频曲线; (b)最佳偏置下磁电复合材料的磁发射强度随MoS2填充量的变化; (c)不同MoS2填充量磁电复合材料在最佳偏置下的磁发射强度随电压的变化
Fig. 7. (a) Sweep frequency curves of ME composites with different MoS2 filling contents under optimal bias conditions; (b) variation of magnetic emission intensity of ME composite with different MoS2 filling contents under optimal bias conditions; (c) variation of magnetic emission intensity of ME composite with voltage under optimal bias conditions.
图 8 (a)黏接层杨氏模量随MoS2填充量的变化; (b)黏接层密度随MoS2填充量的变化曲线; (c)黏接层声学阻抗随MoS2填充量变化曲线
Fig. 8. (a) Young’s modulus curves of the adhesive layers with different MoS2 filling contents; (b) density curves of the adhesive layers with different MoS2 filling contents; (c) acoustic impedance curves of the adhesive layers with different MoS2 filling contents.
表 1 不同MoS2填充量黏接层的密度、杨氏模量、声阻抗、声学透射系数
Table 1. Density, Young’s modulus, acoustic impedance, and acoustic transmission coefficient of adhesive layers with different filling contents.
Samples
(epoxy/MoS2)Density
/(g·cm–3)Young’s
modulus
/GPaZ
/MRayls)T epoxy 1.26 3.01 1.95 0.077 0.5% 1.29 4.36 2.38 0.107 1% 1.32 5.56 2.70 0.132 1.5% 1.34 4.12 2.34 0.101 2% 1.35 2.70 1.90 0.074 PZT-5 H 7.61 56 20.63 Metglas 7.82 100 27.93 表 2 本工作与已报道的磁电天线辐射性能比较
Table 2. Comparison of the radiation performance of this work with the reported ME antennas.
年份 材料体系 发射器体积/cm3 工作频率/kHz 辐射能力 单位体积辐射能力 202023 PZT 50.3 33.23 40 fT at 6 m 0.8 fT/cm3 @6 m 202224 PZT/Metglas 0.45 6.3 1 nT at 0.4 m 2.2 nT/cm3 @0.4 m 202325 PZT/Metglas 69 22.23 6 pT at 5.5 m 0.09 pT/cm3 @5.5 m 202014 PZT/Metglas 0.33 23.95 10 fT at 120 m 30 fT/cm3 @120 m 202326 PZT/Metglas 0.56 17.9 1 nT at 1.4 m 1.79 nT/cm3 @1.4 m 202427 PZT/Ni/Metglas 0.16 24.47 2.4 pT at 3 m 15 pT/cm3@3 m 本工作 PZT-5 H/Metglas 0.07 12.51 2.7 nT at 1 m 38.6 nT/cm3 @1 m -
[1] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 208401
Google Scholar
Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys. Sin. 69 208401
Google Scholar
[2] Yang S, Geng J, Zhou H, Wang K, Zhao X, Lu J, Zhao R, Tang X, Zhang Y, Su D, Zhang A, Li H, Jin R 2023 IEEE Trans. Antennas Propag. 71 2082
Google Scholar
[3] 杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508
Google Scholar
Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508
Google Scholar
[4] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 褚昭强 2022 物理学报 71 247502
Google Scholar
Song K X, Min S G, Gao J Q, Zhang S J, Mao Z N, Shen Y, Chu Z Q 2022 Acta Phys. Sin. 71 247502
Google Scholar
[5] 聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin, 汪尧进 2021 物理学报 70 247501
Google Scholar
Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov O, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501
Google Scholar
[6] Chu Z, Yu C, Dan W, Jiang S, Ren Y, Dong K, Dong S 2024 Appl. Phys. Lett. 124 072901
Google Scholar
[7] Li W, Li D, Zhou K, Fu Q, Yuan X, Zhu X 2023 IEEE Trans. Antennas Propag. 71 263
Google Scholar
[8] Cheng Z, Zhou J, Wang B, Wu Q, Ma L, Qin Z, Shen J, Chen W, Peng W, Chang J, Ci P, Dong S 2024 Adv. Sci. 11 2403746
Google Scholar
[9] Cui Y, Wang C, Song X, Wu M, Zhang Q, Yuan H, Yuan Z 2023 iScience 26 105832
Google Scholar
[10] Niu Y, Ren H 2022 IEEE Sens. J. 22 14008
Google Scholar
[11] Liu K, Qin Z, Shen J, Cheng Z, You S, Ma L, Zhou J, Chen W 2024 Nano Res. 17 6630
Google Scholar
[12] Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P 2023 IEEE Antennas Wirel. Propag. Lett. 22 34
Google Scholar
[13] Chang J, He Z, Xu S, Zheng X, Peng W, Ci P, Wang B, Zhang C, Dong S 2024 Adv. Mater. 36 2309159
Google Scholar
[14] Dong C, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Lett. 19 398
Google Scholar
[15] Silva M, Reis S, Lehmann C S, Martins P, Lanceros Mendez S, Lasheras A, Gutiérrez J, Barandiarán J M 2013 ACS Appl. Mater. Interfaces 5 10912
Google Scholar
[16] Hwang G T, Palneedi H, Jung B M, Kwon S J, Peddigari M, Min Y, Kim J W, Ahn C W, Choi J J, Hahn B D, Choi J H, Yoon W H, Park D S, Lee S B, Choe Y, Kim K H, Ryu J 2018 ACS Appl. Mater. Interfaces 10 32323
Google Scholar
[17] Kim S H, Thakre A, Patil D R, Park S H, Listyawan T A, Park N, Hwang G T, Jang J, Kim K H, Ryu J 2021 ACS Appl. Mater. Interfaces 13 19983
Google Scholar
[18] Wong C M, Chan S F, Wu W C, Suen C H, Yau H M, Wang D Y, Li S, Dai J Y 2021 Ultrasonics 116 106506
Google Scholar
[19] Madeshwaran S R, Jayaganthan R, Velmurugan R, Gupta N K, Manzhirov A V 2018 J. Phys. Conf. Ser. 991 012054
Google Scholar
[20] Zhou J, Zhou J, Chen W, Tian J, Shen J, Zhang P 2022 Compos. Struct. 299 116019
Google Scholar
[21] Liang J Z 2013 Composites Part B. 51 224
Google Scholar
[22] Krautkrämer J, Krautkrämer H 2013 Ultrasonic testing of materials (New York: Springer Science & Business Media
[23] Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006
Google Scholar
[24] Hu L, Zhang Q, Wu H, You H, Jiao J, Luo H, Wang Y, Duan C, Gao A 2022 J. Phys. Condens. Matter 34 414002
Google Scholar
[25] Du Y, Xu Y, Wu J, Qiao J, Wang Z, Hu Z, Jiang Z, Liu M 2023 IEEE Trans. Antennas Propag. 71 2167
Google Scholar
[26] Fu S, Cheng J, Jiang T, Wu H, Fang Z, Jiao J, Sokolov O, Ivanov S, Bichurin M, Wang Y 2023 Appl. Phys. Lett. 122 262901
Google Scholar
[27] Leung C M, Zheng H, Yang J, Wang T, Wang F 2024 Sensors 24 694
Google Scholar
计量
- 文章访问数: 210
- PDF下载量: 6
- 被引次数: 0