-
旋转圆柱阴极具有较高的理论靶材利用率,已经普遍应用于各行各业的薄膜制备中。在其等离子体研究方面,相对于平面阴极,旋转圆柱阴极的等离子体放电输运过程涉及三维体系,对此传统模型的计算量大且收敛性差,导致仿真困难。鉴于此,本文利用二维粒子网格/蒙特卡洛(PIC/MCC)模型计算等离子体密度和电势分布作为自洽背景场,再通过三维检验电子蒙特卡洛( MC)方法跟踪电子运动实现三维等离子体放电仿真。在此基础上,以等离子体密度投影作为刻蚀通量,耦合元胞自动机(CA)方法和检验粒子MC方法分别实现三维靶材刻蚀和粒子沉积仿真,从而构建了阴极磁场-等离子体放电-靶材刻蚀-薄膜沉积的全链条三维仿真体系。结果表明,该三维仿真体系能够精准预测圆柱阴极的工作状态,其中靶材利用率为85.81%,与实际误差低于2%,沉积In/Sn摩尔比为11.76,与实际相差6.6%,载板上粒子分布与实际薄膜厚度分布吻合,沉积均匀区长度为1730 mm,与实际误差仅为1.1%。Rotating cylindrical cathodes possess high theoretical target utilization rates and have been widely applied in thin film deposition across various industries. Regarding plasma research, compared to planar cathodes, the plasma discharge and transport processes of rotating cylindrical cathodes involve three-dimensional systems. Traditional plasma models applied to these systems require extensive computational resources and suffer from poor convergence, making simulation difficult. In this context, this paper employs a two-dimensional Particle-in-cell/Monte Carlo Collision (PIC/MCC) model to calculate the plasma density and electric potential distributions as a self-consistent background field. Furthermore, a three-dimensional electron Monte Carlo (MC) method is used to track electron motion, enabling three-dimensional plasma discharge simulation. On this basis, using plasma density projection as the etching flux and coupling the Cellular Automata (CA) method, the rotational etching process of the cylindrical cathode is decomposed into stepwise micro-element static etching, thereby achieving three-dimensional etching behavior simulation. Subsequently, the etched target morphology was equivalently treated as the emission flux of In and Sn atoms, and a three-dimensional test particle Monte Carlo (MC) method was employed to track their motion, realizing three-dimensional particle deposition simulation. Thus, a comprehensive three-dimensional simulation system is constructed, incorporating the cathode magnetic field, plasma discharge, target etching, and thin-film deposition into a complete simulation chain.The results indicate that this three-dimensional simulation system can accurately predict the operating conditions of cylindrical cathodes. The plasma stably accumulates on the cylindrical cathode surface, forming a three-dimensional discharge race track. The simulated etching profile is consistent with experimental result, showing precise matching of feature points and target residual thickness. The utilization rate of the target material is 85.81%, with an error of less than 2% compared to that of the measurement. The molar ratio of In/Sn on the substrate is 11.76, with an error of 6.6% compared to the test results by Energy Dispersive Spectroscopy (EDS). The particle distribution on the substrate matched the actual film thickness distribution, with a uniform deposition length of 1730 mm, representing an error of only 1.1% compared to actual value.
-
Keywords:
- rotating cylindrical magnetron /
- three-dimensional modeling /
- plasma discharge /
- plasma transport
-
[1] Saenko A V, Tominov R V, Jityaev I L, Vakulov Z E, Avilov V I, Polupanov N V, Smirnov V A 2024 Nanomaterials 141901
[2] Dhage S R, Badgujar A C 2018 J. Alloys Compd. 763504
[3] Chen J F, Ding X P, Wang J F, Xie Z Y, Wang S H 2024 J. Alloys Compd. 1002175318
[4] Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 2041661
[5] Matthews S, De Bosscher W, Blondeel A, Van Holsbeke J, Delrue H 2008 Vacuum 83518
[6] Park J H, Ahn K J, Na S I, Kim H K 2011 Solar Energy Mater. Sol. Cells 95657
[7] Park J H, Ahn K J, Park K I, Na S I, Kim H K 2010 J. Phys. D: Appl. Phys. 43115101
[8] Van Aeken K, Maheude S, Depla D 2008 J. Phys. D: Appl. Phys. 4120
[9] Fan Q H, Grago J J, Zhou L Q 2004 J. Appl. Phys. 956017
[10] Teunissen J, Ebert U 2016 Plasma Sources Sci. T. 25044005
[11] Bogaerts A, Bultinck E, Kolev I, Schwaederlé L, Van Aeken K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 4219
[12] Musschoot J, Depla D, Buyle G, Haemers J, De Gryse R 2006 J. Phys. D: Appl. Phys. 3918
[13] Fu Y, Ji P, He M, Huang P, Huang G, Huang W 2024 Plasma Chem. Plasma Process. 44601
[14] Bogaerts A, Kolev I, Buyle G 2008 Modeling of the Magnetron Discharge (Berlin: Springer) pp 61-130
[15] Zhu G, Yang Y, Xiao B, Gan Z 2023 Molecules 287660
[16] Cui S H, Zuo W, Huang J, Li X T, Chen Q H, Guo Y X, Yang C, Wu Z C, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2023 Acta Phys. Sin. 72085202(in Chinese) [崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振2023物理学报72085202]
[17] Kapran A, Ballage C, Hubicka Z, Minea T 2025 Vaccum 238114324
[18] Sabavath G K, Swaroop R, Singh J, Panda A B, Haldar S, Rao N, Mahapatra S K 2022 Plasma Phys. Rep. 48548
[19] Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Chu W Z 2022 J. Phys. D: Appl. Phys. 55325203
[20] Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187358
[21] Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103013309
[22] Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125063302
[23] Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 171285
[24] Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61165101(in Chinese) [沈向前, 谢泉, 肖清泉, 陈茜, 丰云2012物理学报61165101]
[25] Chen L, Cui S H, Tang W, Zhou L, Li T, Liu L, An X, Wu Z, Ma Z, Lin H 2020 Plasma Sources Sci. Technol. 29025016
[26] Nanbu K, Konodo S 1997 Jpn. J. Appl. Phys. 364808
[27] Shidoji E, Nemoto M, Nomura T 2000 J. Vac. Sci. Technol. A 182858
[28] Mikolaychuk M, Knyazeva A 2014 AIP Conf. Proc. 1623419
[29] Liu H, Niu X, Yu D R 2019 J. Plasma Phys. 85905850208
[30] Rumble J R 2024 CRC Handbook of Chemistry and Physics (Florida: CRC Press) pp 10-113
[31] Shon C H, Lee J K 2002 Appl. Surf. Sci. 192258
计量
- 文章访问数: 11
- PDF下载量: 1
- 被引次数: 0