搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转圆柱阴极磁控溅射三维仿真模型的建立与验证

马梓淇 徐强 肖梦然 汤诗奕 陶志群 杨东杰 安小凯 刘亮亮 崔岁寒 吴忠振

引用本文:
Citation:

旋转圆柱阴极磁控溅射三维仿真模型的建立与验证

马梓淇, 徐强, 肖梦然, 汤诗奕, 陶志群, 杨东杰, 安小凯, 刘亮亮, 崔岁寒, 吴忠振

Establishment and Validation of a Three-Dimensional Simulation Model for Magnetron Sputtering of Rotating Cylindrical Cathode

MA Ziqi, XU Qiang, XIAO Mengran, TANG Shiyi, TAO Zhiqun, YANG Dongjie, AN Xiaokai, LIU Liangliang, CUI Suihan, WU Zhongzhen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 旋转圆柱阴极具有较高的理论靶材利用率,已经普遍应用于各行各业的薄膜制备中。在其等离子体研究方面,相对于平面阴极,旋转圆柱阴极的等离子体放电输运过程涉及三维体系,对此传统模型的计算量大且收敛性差,导致仿真困难。鉴于此,本文利用二维粒子网格/蒙特卡洛(PIC/MCC)模型计算等离子体密度和电势分布作为自洽背景场,再通过三维检验电子蒙特卡洛( MC)方法跟踪电子运动实现三维等离子体放电仿真。在此基础上,以等离子体密度投影作为刻蚀通量,耦合元胞自动机(CA)方法和检验粒子MC方法分别实现三维靶材刻蚀和粒子沉积仿真,从而构建了阴极磁场-等离子体放电-靶材刻蚀-薄膜沉积的全链条三维仿真体系。结果表明,该三维仿真体系能够精准预测圆柱阴极的工作状态,其中靶材利用率为85.81%,与实际误差低于2%,沉积In/Sn摩尔比为11.76,与实际相差6.6%,载板上粒子分布与实际薄膜厚度分布吻合,沉积均匀区长度为1730 mm,与实际误差仅为1.1%。
    Rotating cylindrical cathodes possess high theoretical target utilization rates and have been widely applied in thin film deposition across various industries. Regarding plasma research, compared to planar cathodes, the plasma discharge and transport processes of rotating cylindrical cathodes involve three-dimensional systems. Traditional plasma models applied to these systems require extensive computational resources and suffer from poor convergence, making simulation difficult. In this context, this paper employs a two-dimensional Particle-in-cell/Monte Carlo Collision (PIC/MCC) model to calculate the plasma density and electric potential distributions as a self-consistent background field. Furthermore, a three-dimensional electron Monte Carlo (MC) method is used to track electron motion, enabling three-dimensional plasma discharge simulation. On this basis, using plasma density projection as the etching flux and coupling the Cellular Automata (CA) method, the rotational etching process of the cylindrical cathode is decomposed into stepwise micro-element static etching, thereby achieving three-dimensional etching behavior simulation. Subsequently, the etched target morphology was equivalently treated as the emission flux of In and Sn atoms, and a three-dimensional test particle Monte Carlo (MC) method was employed to track their motion, realizing three-dimensional particle deposition simulation. Thus, a comprehensive three-dimensional simulation system is constructed, incorporating the cathode magnetic field, plasma discharge, target etching, and thin-film deposition into a complete simulation chain.The results indicate that this three-dimensional simulation system can accurately predict the operating conditions of cylindrical cathodes. The plasma stably accumulates on the cylindrical cathode surface, forming a three-dimensional discharge race track. The simulated etching profile is consistent with experimental result, showing precise matching of feature points and target residual thickness. The utilization rate of the target material is 85.81%, with an error of less than 2% compared to that of the measurement. The molar ratio of In/Sn on the substrate is 11.76, with an error of 6.6% compared to the test results by Energy Dispersive Spectroscopy (EDS). The particle distribution on the substrate matched the actual film thickness distribution, with a uniform deposition length of 1730 mm, representing an error of only 1.1% compared to actual value.
  • [1]

    Saenko A V, Tominov R V, Jityaev I L, Vakulov Z E, Avilov V I, Polupanov N V, Smirnov V A 2024 Nanomaterials 141901

    [2]

    Dhage S R, Badgujar A C 2018 J. Alloys Compd. 763504

    [3]

    Chen J F, Ding X P, Wang J F, Xie Z Y, Wang S H 2024 J. Alloys Compd. 1002175318

    [4]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 2041661

    [5]

    Matthews S, De Bosscher W, Blondeel A, Van Holsbeke J, Delrue H 2008 Vacuum 83518

    [6]

    Park J H, Ahn K J, Na S I, Kim H K 2011 Solar Energy Mater. Sol. Cells 95657

    [7]

    Park J H, Ahn K J, Park K I, Na S I, Kim H K 2010 J. Phys. D: Appl. Phys. 43115101

    [8]

    Van Aeken K, Maheude S, Depla D 2008 J. Phys. D: Appl. Phys. 4120

    [9]

    Fan Q H, Grago J J, Zhou L Q 2004 J. Appl. Phys. 956017

    [10]

    Teunissen J, Ebert U 2016 Plasma Sources Sci. T. 25044005

    [11]

    Bogaerts A, Bultinck E, Kolev I, Schwaederlé L, Van Aeken K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 4219

    [12]

    Musschoot J, Depla D, Buyle G, Haemers J, De Gryse R 2006 J. Phys. D: Appl. Phys. 3918

    [13]

    Fu Y, Ji P, He M, Huang P, Huang G, Huang W 2024 Plasma Chem. Plasma Process. 44601

    [14]

    Bogaerts A, Kolev I, Buyle G 2008 Modeling of the Magnetron Discharge (Berlin: Springer) pp 61-130

    [15]

    Zhu G, Yang Y, Xiao B, Gan Z 2023 Molecules 287660

    [16]

    Cui S H, Zuo W, Huang J, Li X T, Chen Q H, Guo Y X, Yang C, Wu Z C, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2023 Acta Phys. Sin. 72085202(in Chinese) [崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振2023物理学报72085202]

    [17]

    Kapran A, Ballage C, Hubicka Z, Minea T 2025 Vaccum 238114324

    [18]

    Sabavath G K, Swaroop R, Singh J, Panda A B, Haldar S, Rao N, Mahapatra S K 2022 Plasma Phys. Rep. 48548

    [19]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Chu W Z 2022 J. Phys. D: Appl. Phys. 55325203

    [20]

    Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187358

    [21]

    Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103013309

    [22]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125063302

    [23]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 171285

    [24]

    Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61165101(in Chinese) [沈向前, 谢泉, 肖清泉, 陈茜, 丰云2012物理学报61165101]

    [25]

    Chen L, Cui S H, Tang W, Zhou L, Li T, Liu L, An X, Wu Z, Ma Z, Lin H 2020 Plasma Sources Sci. Technol. 29025016

    [26]

    Nanbu K, Konodo S 1997 Jpn. J. Appl. Phys. 364808

    [27]

    Shidoji E, Nemoto M, Nomura T 2000 J. Vac. Sci. Technol. A 182858

    [28]

    Mikolaychuk M, Knyazeva A 2014 AIP Conf. Proc. 1623419

    [29]

    Liu H, Niu X, Yu D R 2019 J. Plasma Phys. 85905850208

    [30]

    Rumble J R 2024 CRC Handbook of Chemistry and Physics (Florida: CRC Press) pp 10-113

    [31]

    Shon C H, Lee J K 2002 Appl. Surf. Sci. 192258

  • [1] 黄渝峰, 贾文柱, 张莹莹, 宋远红. 微重力条件下复杂等离子体中激光诱导马赫锥的三维模拟. 物理学报, doi: 10.7498/aps.73.20231849
    [2] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, doi: 10.7498/aps.73.20240319
    [3] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用. 物理学报, doi: 10.7498/aps.73.20240877
    [4] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, doi: 10.7498/aps.71.20211975
    [5] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布. 物理学报, doi: 10.7498/aps.70.20202135
    [6] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, doi: 10.7498/aps.70.20201701
    [7] 雷健平, 何立明, 陈一, 陈高成, 赵兵兵, 赵志宇, 张华磊, 邓俊, 费力. 旋转滑动弧放电等离子体滑动放电模式的实验研究. 物理学报, doi: 10.7498/aps.69.20200672
    [8] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, doi: 10.7498/aps.68.20190583
    [9] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, doi: 10.7498/aps.66.025201
    [10] 易忠, 王松, 唐小金, 武占成, 张超. 不同温度下复杂介质结构内带电规律仿真分析. 物理学报, doi: 10.7498/aps.64.125201
    [11] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究. 物理学报, doi: 10.7498/aps.62.104101
    [12] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, doi: 10.7498/aps.61.225203
    [13] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构. 物理学报, doi: 10.7498/aps.58.8432
    [14] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, doi: 10.7498/aps.57.5761
    [15] 徐利军, 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体涂敷三维导体目标FDTD分析. 物理学报, doi: 10.7498/aps.55.3470
    [16] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究. 物理学报, doi: 10.7498/aps.52.1676
    [17] 李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东. 托卡马克删削层与偏滤器中等离子体输运的解析研究. 物理学报, doi: 10.7498/aps.50.507
    [18] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, doi: 10.7498/aps.46.2376
    [19] 白秀庭, 周庭东. 辉光放电等离子体三维电流的理论分析. 物理学报, doi: 10.7498/aps.42.1463
    [20] 王海达. 氩气直流放电等离子体中三稳现象的半经典理论. 物理学报, doi: 10.7498/aps.39.1928
计量
  • 文章访问数:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回