搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传统光学模型的改进及其在重离子碰撞反应中的应用

梁春恬 孙小军 黄俊曦 杨昊瑜 李小华 蔡崇海

引用本文:
Citation:

传统光学模型的改进及其在重离子碰撞反应中的应用

梁春恬, 孙小军, 黄俊曦, 杨昊瑜, 李小华, 蔡崇海

Improvements of traditional optical model and its applications in heavy-ion collision reaction

LIANG Chuntian, SUN Xiaojun, HUANG Junxi, YANG Haoyu, LI Xiaohua, CAI Chonghai
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文针对重离子碰撞中弹核与靶核质量相近体系的相互作用问题, 提出改进型光学模型APOMHI. 该模型突破传统框架中仅侧重靶核贡献的局限, 通过对称化处理弹核与靶核的势场影响, 在Woods-Saxon型光学势场构建中, 弹靶核的扩散宽度与半径参数采用对等形式, 确保两者贡献的等价性. 同时, 角动量耦合方式也相应由L-S耦合替代了j-j耦合. 将改进后的光学模型应用于以18O作为弹核的系列重离子碰撞反应, 通过拟合弹性散射角分布与复合核吸收截面数据, 得到了一组普适唯象光学势, 经比较, 理论结果与现有实验数据大体相符.
    To describe the projectile-target interaction in heavy-ion collision, the traditional optical model is improved and a corresponding optical model for heavy-ion collisions is established in this work The program APOMHI is developed accordingly. In heavy-ion collisions, the mass of the projectile is comparable to the mass of target nucleus. Therefore, the projectile and target nucleus must be treated equally. The potential field for their relative motion must arise from an equivalent contribution of both nuclei, not just from the target nucleus. Consequently, the angular momentum coupling scheme must adopt L - S coupling, instead of j - j coupling. The projectile spin i and target spin I first couple to form the projectile-target system spin S (which varies between $ \left| {I - i} \right| $ and $ i + I $). Then, the spin S of this system couples with the orbital angular momentum L of relative motion, forming a total angular momentum J . Thus, the radial wave function UlSJ (r) involves three quantum numbers: l , S , and J , while traditional optical model only involves l and j . Furthermore, since the mass of projectile is similar the mass of target, the form of the optical model potential is symmetrical relative to the projectile and target. The projectile nucleus and the target nucleus are still assumed to be spherical, and their excited states are not considered. The projectile may be lighter or heavier than the target, but they cannot be identical particles. By using this optical model program APOMHI, the elastic scattering angular distributions and compound nucleus absorption cross sections for heavy-ion collisions can be calculated. Taking for example a series of heavy-ion collision reactions with 18O as the projectile nucleus, a corresponding set of universal optical potential parameters is obtained by fitting experimental data. The comparisons show that the theoretical calculations generally accord well with the available experimental data. Here, the results for fusion cross-sections and elastic scattering angular distributions using several representative target nuclei (lighter, comparable in mass, heavier, and heavy compared to the projectile nucleus) are taken for example. Specifically, the fusion cross-section results correspond to targets 9Be, 27Al, 63Cu and 150Sm, while the elastic scattering angular distributions correspond to targets 16O, 24Mg, 58Ni, and 120Sn.
  • 图 1  9Be, 10B, 11B和16O作为靶核的熔合截面理论与实验比较(实验数据来源为: H. A. Roth 1980[32], R. M. Anjos 1994[33], J. Thomas 1985[35], J. Thomas 1986[36])

    Fig. 1.  Comparison between theoretical results and experimental data of fusion cross section for 9Be, 10B, 11B and 16O target. The experimental data come from H.A. Roth 1980[32], R.M. Anjos 1994[33], J. Thomas 1985[35], J. Thomas 1986[36].

    图 4  150Sm, 188Os, 192Os, 194Pt, 197Au和208Pb作为靶核的熔合截面理论与实验比较(实验数据来源为: D. J. Hinde 1986 (EVR)[56], R. J. Charity 1986 (FF)[57], R. J. Charity 1986 (EVR FF)[57], J. van der Plicht 1983[59], P. V. Laveen 2015 (EVR)[60], P. V. Laveen 2015 (FF)[60], R. Yanez 2013 (FF)[61], S. Appannababu 2009 (FF)[62], E. Vulgaris 1986[63])

    Fig. 4.  Comparison between theoretical results and experimental data of fusion cross section for 150Sm, 188Os, 192Os, 194Pt, 197Au and 208Pb target. The experimental data come from D. J. Hinde 1986 (EVR)[56], R. J. Charity 1986 (FF)[57], R. J. Charity 1986 (EVR FF)[57], J. van der Plicht 1983[59], P. V. Laveen 2015 (EVR)[60], P. V. Laveen 2015 (FF)[60], R. Yanez 2013 (FF)[61], S. Appannababu 2009 (FF)[62], E. Vulgaris 1986[63].

    图 2  24Mg, 27Al, 28Si, 44Ca, 58Ni和60Ni 作为靶核的熔合截面理论与实验比较(实验数据来源为: S. L. Tabor 1978[38], R. Rascher 1979[40], Y. Eisen 1977[41], E. Bozek 1986[42], A. M. Borges 1992[43], C. P. Silva 1997[44])

    Fig. 2.  Comparison between theoretical results and experimental data of fusion cross section for 24Mg, 27Al, 28Si, 44Ca, 58Ni and 60Ni target. The experimental data come from S.L. Tabor 1978[38], R. Rascher 1979[40], Y. Eisen 1977[41], E. Bozek 1986[42], A. M. Borges 1992[43], C. P. Silva 1997[44].

    图 3  63Cu, 64Ni, 65Cu, 74Ge, 92Mo和148Nd 作为靶核的熔合截面理论与实验比较(实验数据来源为: L. C. Chamon 1992[48], C. P. Silva 1997[44], H. M. Jia 2012[50], M. Bonjelloun 1993[52], R. Broda 1975[55])

    Fig. 3.  Comparison between theoretical results and experimental data of fusion cross section for 63Cu, 64Ni, 65Cu, 74Ge, 92Mo and 148Nd target. The experimental data come from L.C. Chamon 1992[48], C.P. Silva 1997[44], H.M. Jia 2012[50], M. Bonjelloun 1993[52], R. Broda 1975[55].

    图 5  不同入射能量下13C, 16O, 24Mg和64Zn作为靶核的弹性散射角分布理论与实验比较(实验数据来源: A. T. Rudchik 2011[34], S. Szilner 2006[37], M. Bernas 1980[39], S. Salem-Vasconcelos 1994[49])

    Fig. 5.  Comparison between theoretical results and experimental data of elastic scattering angular distribution for 13C, 16O, 24Mg and 64Zn target at different incident energies. The experimental data come from A. T. Rudchik 2011[34], S. Szilner 2006[37], M. Bernas 1980[39], S. Salem-Vasconcelos 1994[49].

    图 7  不同入射能量下90Zr, 112, 116Sn和174Yb作为靶核的弹性散射角分布理论与实验比较(实验数据来源为: V. Jha 2004[51], H. G. Bohlen 1975[53], B. C. Robertson 1976[54], P. K. Sahu 2001[58])

    Fig. 7.  Comparison between theoretical results and experimental data of elastic scattering angular distribution for 90Zr, 112, 116Sn and 174Yb target at different incident energies. The experimental data come from V. Jha 2004[51], H. G. Bohlen 1975[53], B. C. Robertson 1976[54], P. K. Sahu 2001[58].

    图 6  不同入射能量下58Ni和60Ni作为靶核的弹性散射角分布理论与实验比较

    Fig. 6.  Comparison between theoretical results and experimental data of elastic scattering angular distribution for 58Ni and 60Ni target at different incident energies.

    图 8  普适光参下靶核为7Li, 12C和120Sn的熔合截面与弹性散射角分布情况(实验数据来源为: B. Heusch 1982[65], C. Beck 1985[66], D. G. Kovar 1979[67], P. Sperr 1976[68], T. K. Steinbach 2014[69], Y. Eyal 1976[70], A. T. Rudchik 2007[64])

    Fig. 8.  Fusion cross section and elastic scattering angular distribution for 7Li, 12C and 120Sn target with global optical parameters. The experimental data come from B. Heusch 1982[65], C. Beck 1985[66], D. G. Kovar 1979[67], P. Sperr 1976[68], T. K. Steinbach 2014[69], Y. Eyal 1976[70], A. T. Rudchik 2007[64].

    图 9  单核光参下靶核为7Li, 12C和120Sn的熔合截面与弹性散射角分布情况(实验数据来源为: B. Heusch 1982[65], C. Beck 1985[66], D. G. Kovar 1979[67], P. Sperr 1976[68], T. K. Steinbach 2014[69], Y. Eyal 1976[70], A. T. Rudchik 2007[64])

    Fig. 9.  Fusion cross section and elastic scattering angular distribution for 7Li, 12C and 120Sn target with single nuclear optical parameters. The experimental data come from B. Heusch 1982[65], C. Beck 1985[66], D. G. Kovar 1979[67], P. Sperr 1976[68], T.K. Steinbach 2014[69], Y. Eyal 1976[70], A. T. Rudchik 2007[64].

    图 10  普适光参对14C和61Ni靶核的验证(实验数据来源: A. T. Rudchik 2011[73], N. K. Deb 2022[74])

    Fig. 10.  Verification for 14C and 61Ni target with the global optical parameters. The experimental data come from A. T. Rudchik 2011[73], N. K. Deb 2022[74].

    表 1  APOMHI光学模型势参数

    Table 1.  Parameters in the APOMHI optical model.

    各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}\mathrm{A}}, {r}_{\mathrm{C}\mathrm{B}} $ 2
    中心势 $ {V}_{\mathrm{c}}\left(r\right) $ $ {r}_{\mathrm{c}\mathrm{A}} $, $ {r}_{\mathrm{c}\mathrm{B}}, {a}_{\mathrm{c}\mathrm{A}}, {a}_{\mathrm{c}\mathrm{B}0}, {a}_{\mathrm{C}\mathrm{B}1} $ 5
    面吸收虚部势 $ {W}_{\mathrm{S}}\left(r\right) $ $ {r}_{\mathrm{S}\mathrm{A}}, {r}_{\mathrm{S}\mathrm{B}}, {a}_{\mathrm{S}\mathrm{B}1}, {a}_{\mathrm{S}\mathrm{A}}, {a}_{\mathrm{S}\mathrm{B}0} $ 5
    体系收虚部势 $ {W}_{\mathrm{V}}\left(r\right) $ $ {r}_{\mathrm{V}\mathrm{A}}, {r}_{\mathrm{V}\mathrm{B}}, {a}_{\mathrm{V}\mathrm{A}}, {a}_{\mathrm{V}\mathrm{B}0}, {a}_{\mathrm{V}\mathrm{B}1} $ 5
    自旋-轨道实部势 $ {V}_{\mathrm{S}\mathrm{O}}\left(r\right) $ rRSOA, rRSOB, aRSOA,
    aRSOB0, aRSOB1,$ {\overline{V}}_{\mathrm{S}\mathrm{O}} $
    6
    自旋-轨道虚部势 $ {W}_{\mathrm{S}\mathrm{O}}\left(r\right) $ rISOA, rISOB, aISOA,
    aISOB0, aISOB1${\overline{W}}_{\mathrm{S}\mathrm{O}} $
    6
    中心势强度 $ {\overline{V}}_{\mathrm{c}} $ $ {\overline{V}}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{\mathrm{B}}, {\overline{V}}_{4} $ 5
    面吸收势强度 $ {\overline{W}}_{\mathrm{S}} $ $ {\overline{W}}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}\mathrm{B}}, {\overline{W}}_{\mathrm{S}2} $ 4
    体系收势强度 $ {\overline{W}}_{\mathrm{V}} $ $ {\overline{W}}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2} $ 3
    总计 41
    下载: 导出CSV

    表 2  SOOPA光学模型势参数

    Table 2.  Parameters in the SOOPA optical model.

    各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}} $ 1
    0级弥散宽度 $ {a}_{i0} $ $ {a}_{\mathrm{R}0}, {a}_{\mathrm{S}0}, {a}_{\mathrm{V}0}, {a}_{\mathrm{S}\mathrm{O}0} $ 4
    0级半径参数 $ {r}_{i0} $ $ {r}_{\mathrm{R}0}, {r}_{\mathrm{S}0}, {r}_{\mathrm{V}0}, {r}_{\mathrm{S}\mathrm{O}0} $ 4
    修正参数 $ \xi $ $ \xi $ 1
    1级弥散宽度 $ {W}_{\mathrm{V}}\left(r\right) $ $ {a}_{\mathrm{R}1}, {a}_{\mathrm{S}1}, {a}_{\mathrm{V}1}, {a}_{\mathrm{S}\mathrm{O}1} $ 4
    1级半径参数 $ {V}_{\mathrm{S}\mathrm{O}}\left(r\right) $ $ {r}_{\mathrm{R}1}, {r}_{\mathrm{S}1}, {r}_{\mathrm{V}1}, {r}_{\mathrm{S}\mathrm{O}1} $ 4
    中心势强度 $ {\overline{V}}_{\mathrm{c}} $ $ {\overline{V}}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{3}, {\overline{V}}_{4} $ 5
    面吸收势强度 $ {\overline{W}}_{\mathrm{S}} $ $ {\overline{W}}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}2}, {\overline{W}}_{\mathrm{S}3} $ 4
    体系收势强度 $ {\overline{W}}_{\mathrm{V}} $ $ {\overline{W}}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2}{, \stackrel{-}{W}}_{\mathrm{V}3} $ 4
    自旋-轨道实部
    势强度
    $ {\overline{V}}_{\mathrm{S}\mathrm{O}} $ VSO 1
    自旋-轨道虚部
    势强度
    $ {\overline{W}}_{\mathrm{S}\mathrm{O}} $ WSO 1
    总计 33
    下载: 导出CSV

    表 3  本文实验数据来源

    Table 3.  Experimental data used in this work

    序号靶核熔合截面弹性散射角分布
    EL/MeV文献EL/MeV文献
    19Be7.0—21.0[32]
    210B22.0—63.0[33]
    311B21.0—65.0[33]
    413C105.0[34]
    516O13.9—85.0[35,36]85.0[37]
    624Mg32.0—72.0[38]50.0[39]
    727Al28.0—72.0[40,41]
    828Si34.0—72.0[40]
    944Ca27.0—60.0[42]
    1058Ni35.0—64.0[43,44]35.1, 36.0, 37.1, 38.0, 46.0, 63.0[4547]
    1160Ni40.0—63.0[44]34.5, 35.5, 37.1, 38.0, 63.0[45,47]
    1264Ni38.5—64.0[44]
    1363Cu40.0—65.0[48]
    1465Cu40.0—65.0[48]
    1564Zn49.0[49]
    1674Ge37.0—61.0[50]
    1790Zr90.0[51]
    1892Mo50.0—65.0[52]
    19112Sn60.0[53]
    20116Sn67.0[54]
    21148Nd61.8—77.0[55]
    22150Sm65.0—125.0[56,57]
    23174Yb83.0[58]
    24188Os80.0—140.0[59]
    25192Os79.0—124.0[56,57]
    26194Pt77.6—106.0[60]
    27197Au77.6—102.0[61,62]
    28208Pb75.0—102.0[63]
    297Li114[64]
    3012C15.0—216[6570]66.2, 85.0, 100.0, 120.0, 216.0[71,72]
    31120Sn60.0, 66.7, 72.0[47,53,54]
    3214C105.0[73]
    3361Ni33.5—52.6[74]
    下载: 导出CSV

    表 4  18O作为弹核系列核反应APOMHI模型下普适光学势最佳参数

    Table 4.  The APOMHI optimal OMP parameters for 18O projectiles incidence on different target nuclei.

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $451.0000000022$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.06584537
    2$ {\overline{V}}_{1} $15.3000000023$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $0.48015487
    3$ {\overline{V}}_{2} $0.4800000024$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.01976280
    4$ {\overline{V}}_{\mathrm{B}} $0.0000000025$ {r}_{\mathrm{c}\mathrm{A}} $1.03999996
    5$ {\overline{V}}_{4} $18.7319297826$ {r}_{\mathrm{c}\mathrm{B}} $1.04000000
    6$ {\overline{W}}_{\mathrm{S}0} $30.0000000027$ {r}_{\mathrm{S}\mathrm{A}} $1.84839511
    7$ {\overline{W}}_{\mathrm{S}1} $–0.9900000028$ {r}_{\mathrm{S}\mathrm{B}} $1.46500000
    8$ {\overline{W}}_{\mathrm{S}\mathrm{B}} $0.0000000029$ {r}_{\mathrm{V}\mathrm{A}} $1.93000000
    9$ {\overline{W}}_{\mathrm{S}2} $0.0000000030$ {r}_{\mathrm{V}\mathrm{B}} $1.47000000
    10$ {\overline{W}}_{\mathrm{V}0} $10.0000000031$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $1.04999995
    11$ {\overline{W}}_{\mathrm{V}1} $13.0000000032$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}} $1.55366528
    12$ {\overline{W}}_{\mathrm{V}2} $–0.0120000033$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $1.05001342
    13$ {\overline{V}}_{\mathrm{S}\mathrm{O}} $80.0000000034$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}} $1.75388050
    14$ {\overline{W}}_{\mathrm{S}\mathrm{O}} $25.0000000035$ {r}_{\mathrm{C}\mathrm{A}} $1.25000000
    15$ {a}_{\mathrm{c}\mathrm{A}} $0.8500000036$ {r}_{\mathrm{C}\mathrm{B}} $1.25000000
    16$ {a}_{\mathrm{c}\mathrm{B}0} $0.0822956637$ {a}_{\mathrm{c}\mathrm{B}1} $0.24493097
    17$ {a}_{\mathrm{S}\mathrm{A}} $0.3510782138$ {a}_{\mathrm{S}\mathrm{B}1} $0.35000000
    18$ {a}_{\mathrm{S}\mathrm{B}0} $0.3477544839$ {a}_{\mathrm{V}\mathrm{B}1} $0.09000000
    19$ {a}_{\mathrm{V}\mathrm{A}} $0.3962688140$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.11783799
    20$ {a}_{\mathrm{V}\mathrm{B}0} $0.3833678141$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.07000000
    21$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $0.79141617
    下载: 导出CSV

    表 5  18O作为弹核系列核反应SOOPA模型下普适光学势最佳参数

    Table 5.  The SOOPA optimal OMP parameters for 18O projectiles incidence on different target nuclei.

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $1300.0000000018$ {a}_{\mathrm{V}0} $0.64614904
    2$ {\overline{V}}_{1} $9.3295412119$ {a}_{\mathrm{S}\mathrm{O}0} $0.55000001
    3$ {\overline{V}}_{2} $–0.0331055720$ {r}_{\mathrm{R}0} $1.20000005
    4$ {\overline{V}}_{3} $–45.0000000021$ {r}_{\mathrm{S}0} $1.24034297
    5$ {\overline{V}}_{4} $34.9734268222$ {r}_{\mathrm{V}0} $1.20000005
    6$ {\overline{W}}_{\mathrm{S}0} $27.7965812723$ {r}_{\mathrm{S}\mathrm{O}0} $1.25000000
    7$ {\overline{W}}_{\mathrm{S}1} $–0.8797226024$ {r}_{\mathrm{C}} $1.25000000
    8$ {\overline{W}}_{\mathrm{S}2} $1.8755728025$ \xi $0.11376333
    9$ {\overline{W}}_{\mathrm{S}3} $1.0761344426$ {a}_{\mathrm{R}1} $0.02999442
    10$ {\overline{W}}_{\mathrm{V}0} $65.9998703027$ {a}_{\mathrm{S}1} $0.02947382
    11$ {\overline{W}}_{\mathrm{V}1} $5.4015379028$ {a}_{\mathrm{V}1} $–0.03926823
    12$ {\overline{W}}_{\mathrm{V}2} $0.0888160029$ {a}_{\mathrm{S}\mathrm{O}1} $0.00000000
    13$ {\overline{W}}_{\mathrm{V}3} $–5.0999999030$ {r}_{\mathrm{R}1} $–0.00313194
    14$ {\overline{V}}_{\mathrm{S}\mathrm{O}0} $10.0000000031$ {r}_{\mathrm{S}1} $0.18612149
    15$ {\overline{W}}_{\mathrm{S}\mathrm{O}0} $1.0000000032$ {r}_{\mathrm{V}1} $0.01397228
    16$ {a}_{\mathrm{R}0} $0.5215224633$ {r}_{\mathrm{S}\mathrm{O}1} $0.00000000
    17$ {a}_{\mathrm{S}0} $0.34999999
    下载: 导出CSV

    表 6  APOMHI与SOOPA两种模型下理论与实验偏差比较

    Table 6.  Deviation of theoretical results and experimental data with APOMHI and SOOPA model respectively.

    靶核APOMISPOOA
    $ \chi _{\text{f}}^2 $$ \chi _{\text{e}}^{2} $$ {\chi ^2} $$ \chi _{\text{f}}^{2} $$ \chi _{\text{e}}^{2} $$ {\chi ^2} $
    9Be1.391.392.332.33
    10B2.172.172.892.89
    11B4.024.024.514.51
    13C286.27286.27467.75467.75
    16O21.00162.4491.7232.16147.7489.95
    24Mg3.119.746.430.3897.8249.10
    27Al17.6017.6016.5216.52
    28Si15.4315.437.727.72
    44Ca12.0512.056.106.10
    58Ni88.30646.73367.5197.932046.431072.18
    60Ni21.251404.33712.7935.383194.351614.86
    64Ni43.2843.2842.0142.01
    63Cu5.065.064.424.42
    65Cu3.903.905.245.24
    64Zn120.98120.98579.60579.60
    74Ge2165.572165.572468.202468.20
    90Zr498.31498.3169.4869.48
    92Mo10.4510.458.458.45
    112Sn74.1174.1188.7988.79
    116Sn403.03403.031026.081026.08
    148Nd42.0742.0721.8521.85
    150Sm9.209.205.315.31
    174Yb12.5712.579.349.34
    188Os80.4980.491422.21422.20
    192Os13.5713.573.843.84
    194Pt26.6526.6530.6630.66
    197Au32.4532.4515.8515.85
    208Pb33.2933.2914.7714.77
    总(以上多核综合)120.56361.85181.87193.12772.73326.79
    7Li166.49166.4985.9585.95
    12C42.2332018.8816030.5542.546563.203302.87
    120Sn229.43229.43354.57354.57
    14C21.3521.3530.1430.14
    61Ni14.0814.08137.80137.80
    下载: 导出CSV

    表 7  7Li, 12C和120Sn靶核单独调参的$ {\chi ^2} $结果

    Table 7.  The $ {\chi ^2} $ results for 7Li, 12C and 120Sn with individual parameter.

    靶核 APOMHI(单核) SOOPA(单核)
    $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $ $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $
    7Li 9.91 9.91 5.86 5.86
    12C 84.23 1437.90 761.07 109.70 2501.96 1305.83
    120Sn 24.84 24.84 15.87 15.87
    下载: 导出CSV
  • [1]

    Feshbach H 1958 Ann. Phys. 5 357Google Scholar

    [2]

    Pruitt C D, Escher J E, Rahman R 2023 Phys. Rev. C 107 014602Google Scholar

    [3]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin M, Soukhovitskii E S, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [4]

    Moumene I, Bonaccorso A 2023 Phys. Rev. C 108 044609Google Scholar

    [5]

    Becchetti F. D., Greenlees G. W. 1969 Phys. Rev. 182 1190Google Scholar

    [6]

    Jeukenne J P, Lejeune A, Mahaux C 1977 Phys. Rev. C 16 80

    [7]

    Jeukenne J P, Lejeune A, Mahaux C 1976 Phys. Rep. 25 83Google Scholar

    [8]

    Bauge E, Delaroche J P, Girod M 1998 Phys. Rev. C 58 1118

    [9]

    Bauge E, Delaroche J P, Girod M 2001 Phys. Rev. C 63 024607Google Scholar

    [10]

    Nobre G P A, Palumbo A, Herman M, Brown D, Hoblit S 2015 Phys. Rev. C 91 024618Google Scholar

    [11]

    Soukhovitskiĩ E S, Capote R, Quesada J M, Chiba S, Martyanov D S 2016 Phys. Rev. C 94 064605Google Scholar

    [12]

    Mahaux C, Sartor R 1991 Adv. Nucl. Phys. (Boston, MA: Springer US) pp1—223

    [13]

    Quesada J M, Capote R, Molina A, Lozano M 2003 Phys. Rev. C 67 067601Google Scholar

    [14]

    Morillon B, Romain P 2007 Phys. Rev. C 76 044601Google Scholar

    [15]

    Mueller J M, Charity R J, Shane R, Sobotka L G, Waldecker S J, Dickhoff W H, Crowell A S, Esterline J H, Fallin B, Howell C R, Westerfeldt C, Youngs M, Crowe B J, Pedroni R S 2011 Phys. Rev. C 83 064605Google Scholar

    [16]

    Mahzoon M H, Charity R J, Dickhoff W H, Dussan H, Waldecker S J 2014 Phys. Rev. Lett. 112 162503

    [17]

    Atkinson M C, Dickhoff W H 2019 Phys. Lett. B 798 135027Google Scholar

    [18]

    Zhao X, Sun W, Capote R, Capote R, Soukhovitskiĩ E S, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618Google Scholar

    [19]

    An H, Cai C 2006 Phys. Rev. C 73 054605Google Scholar

    [20]

    Han Y, Shi Y, Shen Q 2006 Phys. Rev. C 74 044615Google Scholar

    [21]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [22]

    Li X H, Chen L W 2012 Nucl. Phys. A 874 62Google Scholar

    [23]

    Liang C T, Li X H, Cai C H 2009 J. Phys. G: Nucl. Part. Phys. 36 085104Google Scholar

    [24]

    Li X, Liang C, Cai C 2007 Nucl. Phys. A 789 103Google Scholar

    [25]

    Shen Q B 2002 Nucl. Sci. Eng. 141 78Google Scholar

    [26]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018 Phys. Rev. C 98 024619Google Scholar

    [27]

    Xu Y, Han Y, Liang H, Wu Z, Guo H, Cai C 2019 Phys. Rev. C 99 034618Google Scholar

    [28]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018 Phys. Rev. C 97 014615Google Scholar

    [29]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2021 Chin. Phys. C 45 114103Google Scholar

    [30]

    Cai C H 2024 Personal communication

    [31]

    Raynal J 1994 CEA Saclay report CEA-N-2772

    [32]

    Roth H A, Christiansson J E, Dubois J 1980 Nucl. Phys. A 343 148Google Scholar

    [33]

    Anjos R M, Added N, Carlin N, Fante L, Figueira M C S, Matheus R, Szanto E M, Tenreiro C, Szanto A 1994 Phys. Rev. C 49 2018Google Scholar

    [34]

    Rudchik A T, Shyrma Y O, Kemper K W, Rusek K, Koshchy E I, Kliczewski S, B 2011 Nucl. Phys. A 852 1

    [35]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985 Phys. Rev. C 31 1980

    [36]

    Thomas J, Chen Y T, Hinds S, Meredith D, Olson M 1986 Phys. Rev. C 33 1679Google Scholar

    [37]

    Szilner S, Haas F, Basrak Z, Freeman R M, Morsad A, Nicoli M P 2006 Nucl. Phys. A 779 21Google Scholar

    [38]

    Tabor S L, Geesaman D F, Henning W, Kovar D G, Rehm K E, Prosser F W 1978 Phys. Rev. C 17 2136Google Scholar

    [39]

    Bernas M, Pougheon F, Roy-Stephan M, Berg G P A, Berthier B, Le J P 1980 Phys. Rev. C 22 1872

    [40]

    Rascher R, Muller W F J, Lieb K P 1979 Phys. Rev. C 20 1028Google Scholar

    [41]

    Eisen Y, Tserruya I, Eyal Y, Fraenkel Z, Hillman M 1977 Nucl. Phys. A 291 459Google Scholar

    [42]

    Bozek E, De Castro-Rizzo D M, Cavallaro S, Delaunay B , Delaunay J, Dumont H, D'onofrio A, Saint-Laurent M G, Sperduto L, Terrasi F 1986 Nucl. Phys. A 451 171

    [43]

    Borges A M, Silva C P, Pereira D, Chamon L C, Rossi E S, 1992 Phys. Rev. C 46 2360Google Scholar

    [44]

    Silva C P, Pereira D, Chamon L C, Rossi E S 1997 Phys. Rev. C 55 3155

    [45]

    Rossi E S, Pereira D, Chamon L C, Silva C P, Alvarez M A G, Gas L R 2002 Nucl. Phys. A 707 325Google Scholar

    [46]

    Alves J J S, Gomes P R S, Lubian J, Chamon L C, Pereira D, Anjos R M 2005 Nucl. Phys. A 748 59Google Scholar

    [47]

    Rehm K E, Koerner H J, Richter M, Rother H P, Schiffer J P, Spieler H 1975 Phys. Rev. C 12 1945Google Scholar

    [48]

    Chamon L C, Pereira D, Rossi E S, Silva C P, Razeto G R, Borges A M, Gomes L C, Sala O 1992 Phys. Lett. B 275 29Google Scholar

    [49]

    Salem-Vasconcelos S, Takagui E M, Bechara M J, Koide K, Dietzsch O, Baur A 1994 Phys. Rev. C 50 927Google Scholar

    [50]

    Jia H M, Lin C J, Xu X X, Zhang H Q, Liu Z H, Yang L, Zhang S T, Bao P F, Sun L J 2012 Phys. Rev. C 86 044621Google Scholar

    [51]

    Jha V, Roy B J, Chatterjee A, Machner H 2004 Eur. Phys. J. A 19 347Google Scholar

    [52]

    Benjelloun M, Galster W, Vervier J 1993 Nucl. Phys. A 560 715Google Scholar

    [53]

    Bohlen H G, Hildenbrand K D, Gobbi A, Kubo K I 1975 Z. Phys. A: Hardrons Nucl. 273 211

    [54]

    Robertson B C, Sample J T, Goosman D R, Nagtani K, Jones K W 1971 Phys. Rev. C 4 2176Google Scholar

    [55]

    Broda R, Ishihara M, Herskind B, Oeschler H, Ogaza S, Ryde H 1975 Nucl. Phys. A 248 356Google Scholar

    [56]

    Hinde D J, Charity R J, Foote G S, Leigh J R, Newton J O, Ogaza S, Chattejee A 1986 Nucl. Phys. A 452 550Google Scholar

    [57]

    Charity R J, Leigh J R, Bokhorst J J M, Chatterjee A, Foote G S, Hinde D J, Newton J O, Ogaza S, Ward D 1986 Nucl. Phys. A 457 441Google Scholar

    [58]

    Sahu P K, Choudhury R K, Biswas D C, Nayak B K 2001 Phys. Rev. C 64 014609Google Scholar

    [59]

    van der Plicht J, Britt H C, Fowler M M, Fraenkel Z, Gavron A, Wilhelmy J B 1983 Phys. Rev. C 28 2022Google Scholar

    [60]

    Laveen P V, Prasad E, Madhavan N, Pal S, Sadhukhan J, Nath S, Gehlot J, Jhingan A, Varier K M, Thomas R G 2015 J. Phys. G: Nucl. Part. Phys. 42 95105Google Scholar

    [61]

    Yanez R, Loveland W, Barrett J S, Yao L 2013 Phys. Rev. C 88 14606Google Scholar

    [62]

    Appannababu S, Mukherjee S, Singh N L, Rath P K, Kumar G K 2009 Phys. Rev. C 80 24603Google Scholar

    [63]

    Vulgaris E, Grodzins L, Steadman S G, Ledoux R 1986 Phys. Rev. C 33 2017

    [64]

    Rudchik A A, Rudchik A T, Kliczewski S, Koshchyc E I, Ponkratenko O A, 2007 Nucl. Phys. A 785 293Google Scholar

    [65]

    Heusch B, Beck C, Coffin J P, Engelstein P, Freeman R M, Guillaume G, Haas F, Wagner P 1982 Phys. Rev. C 26 542Google Scholar

    [66]

    Beck C, Haas F, Freeman R M, Heusch B, Coffin J P, Guillaume G, Rami F, Wagner P 1985 Nucl. Phys. A 442 320Google Scholar

    [67]

    Kovar D G, Geesaman D F, Braid T H, Eisen Y, Henning W, Ophel T R, Paul M, Rehm K E, Sanders S J 1979 Phys. Rev. C 20 1305Google Scholar

    [68]

    Sperr P, Braid T H, Eisen Y, Kovar D G, Prosser F W, Schiffer J P, Tabor S L, Vigdor S 1976 Phys. Rev. Lett. 37 321Google Scholar

    [69]

    Steinbach T K, Vadas J, Schmidt J, Haycraft C, Hudan S, deSouza R T 2014 Phys. Rev. C 90 41603

    [70]

    Eyal Y, Beckerman M, Chechik R, Fraenkel Z, Stocker H 1976 Phys. Rev. C 13 1527Google Scholar

    [71]

    Szilner S, Nicoli M P, Basrak Z, Freeman R M, Haas F, Morsad A 2001 Phys. Rev. C 64 064614Google Scholar

    [72]

    Al-Abdullah T, Carstoiu F, Gagliardi C A 2014 Phys. Rev. C 89 064602Google Scholar

    [73]

    Rudchik A T, Shyrma Y O, Kemper K W, Piasecki E, Romanyshyna G P, Stepanenko Y M, Strojek I, Sakuta S B, Budzanowski A, Głowacka L, Skwirczyńska I, Siudak R, Choiński J, Szczurek A 2011 Eur. Phys. J. A 47 1Google Scholar

    [74]

    Deb N K, Kalita K, Rashid H A, Das A, Nath S, Gehlot J, Madhavan N, Biswas R, Sahoo R N, Giri P K, Parihari A, Rai N K, Biswas S, Mahato A, Roy B J 2022 Phys. Rev. C 105 054608Google Scholar

    [75]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [76]

    Wang L, Zhao K, Tian J L 2013 Nucl. Phys. Rev. 30 289

    [77]

    Chen J B, Yang Y Y, Wang J S, Wang Q, Jin S L, Ma P, Ma J B, Huang M R, Han J L, Bai Z, Hu Q, Jin L, Li R, Zhao M H 2014 Nucl. Phys. Rev. 31 53

    [78]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2020 Chin. Phys. C 44 124103Google Scholar

    [79]

    Zamrun F M, Hagino K 2008 Phys. Rev. C 77 014606Google Scholar

    [80]

    Xu Y L, Han Y L, Liang H Y, Wu Z D, Guo H R, Cai C H 2020 Chin. Phys. C 44 034101Google Scholar

    [81]

    Beck C, Keeley N, Diaz-Torres A 2007 Phys. Rev. C 75 054605Google Scholar

    [82]

    Pieper S C, Macfarlane M H, Gloeckner D H, Kovar D G, Becchetti F D, Harvey B G, Hendrie D L, Homeyer H, Mahoney J, Pühlhofer F, Oertzen W, Zisman M S 1978 Phys. Rev. C 18 180Google Scholar

    [83]

    Al-Ghamdi A H, Ibraheem A A, Hamada S 2022 J. Taibah Univ. Sci. 16 1026Google Scholar

  • [1] 杜文青, 赵岫鸟. 208Pb的Lane自洽色散光学势. 物理学报, doi: 10.7498/aps.74.20241273
    [2] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究. 物理学报, doi: 10.7498/aps.65.200201
    [3] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, doi: 10.7498/aps.64.097202
    [4] 游阳明, 王炳章, 王吉有. P原子的光学模型势与核极化修正. 物理学报, doi: 10.7498/aps.61.202401
    [5] 鲁公儒, 李新强, 李艳敏, 苏方. 代非普适Z'模型下中性Bs介子混合的研究. 物理学报, doi: 10.7498/aps.61.241301
    [6] 林青. 线性光学实现量子普适确切态识别. 物理学报, doi: 10.7498/aps.58.5978
    [7] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律. 物理学报, doi: 10.7498/aps.57.4273
    [8] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆. 物理学报, doi: 10.7498/aps.56.5591
    [9] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, doi: 10.7498/aps.56.6797
    [10] 任浩, 顾德炜, 潘正权, 应和平. 自对耦无序分布随机链Potts模型的临界普适性研究. 物理学报, doi: 10.7498/aps.53.265
    [11] 何茂刚, 刘志刚. 球共振声学法测量普适气体常数. 物理学报, doi: 10.7498/aps.51.1004
    [12] 邓文基. 推广的EZ模型中的普适性行为. 物理学报, doi: 10.7498/aps.51.1171
    [13] 张虎勇, 马余刚, 苏前敏, 沈文庆, 蔡翔舟, 方德清, 胡鹏云, 韩定定. 同位旋效应对中能重离子反应中轻粒子产物的影响. 物理学报, doi: 10.7498/aps.50.193
    [14] 徐晓虎, 沈 剑. 铁电超晶格的一个唯象模型. 物理学报, doi: 10.7498/aps.48.2142
    [15] 孙凤久. 算符光学中的表象变换及关联方程的普适解法. 物理学报, doi: 10.7498/aps.38.653
    [16] 欧发, 蔡永强. 普适性的光学双稳及激光动力学方程和稳定性分析. 物理学报, doi: 10.7498/aps.37.330
    [17] 吴自玉, 汪克林, 兰慧彬, 章正刚, 冼鼎昌. 赝标介子的唯象模型(Ⅱ)——电磁形状因子. 物理学报, doi: 10.7498/aps.36.1618
    [18] 吴自玉;兰慧彬;汪克林;刘耀阳;章正刚;冼鼎昌. 赝标介子的唯象模型(I). 物理学报, doi: 10.7498/aps.36.1048
    [19] 王光瑞, 陈式刚. 一维单峰映象中高周期序列的普适常数与普适函数. 物理学报, doi: 10.7498/aps.35.58
    [20] 王光瑞, 张淑誉, 郝柏林. 强迫布鲁塞尔振子周期解的普适序列. 物理学报, doi: 10.7498/aps.33.1008
计量
  • 文章访问数:  262
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-07-08
  • 上网日期:  2025-07-24

/

返回文章
返回