搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环-点阵-同心环斑图的放电演化机理及光谱诊断研究

冉俊霞 张寒 陈沁怡 周奕汛 苏彤 李庆 李雪辰

引用本文:
Citation:

环-点阵-同心环斑图的放电演化机理及光谱诊断研究

冉俊霞, 张寒, 陈沁怡, 周奕汛, 苏彤, 李庆, 李雪辰

Discharge evolution mechanism and spectral diagnostic study of Loop Dot-matrix Concentric-roll pattern

RAN Junxia, ZHANG Han, CHEN Qinyi, ZHOU Yixun, SU Tong, LI Qin, LI Xuechen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本工作在氩气/空气混合气体介质阻挡放电系统中,利用不同半径的圆形边界叠加形成薄厚组合放电气隙,通过改变外加电压,获得同心环斑图、环-点阵-同心环斑图、靶波斑图、蜂窝斑图,并分析研究了几种斑图的电学特性和光学特性。利用增强型电耦合设备(intensified charge-coupled device,ICCD)重点研究了环-点阵-同心环斑图的时空演化行为,对该斑图的形成机理进行了理论分析。结果表明,该放电斑图在径向上具有从外向内逐渐点亮的发展过程,这与薄气隙对放电的预电离作用有关。对该斑图径向上不同放电细丝的发射光谱进行了采集分析,并对其等离子体参数进行了空间分辨诊断。实验发现,薄气隙中分子振动温度、电子密度及电子温度比厚气隙中大的多。在厚气隙中沿径向从内到外其分子振动温度、电子密度、电子温度逐渐增加,但数值变化较小;薄气隙离圆心更远处的分子振动温度、电子密度、电子温度反而变小,这与气隙中电场的微变化相关。
    Dielectric barrier discharge (DBD) is capable of producing abundant discharge patterns. It is one of the most interesting nonlinear systems for studying pattern formation. In this work, circular boundaries with different radii are utilized and superimposed to form a narrow and wide combined discharge gap. The pressure is set to 25 kPa for the experiment and the frequency is fixed at 58 kHz. By varying the applied voltage, Concentric-roll pattern, Loop Dot-matrix Concentric-roll pattern, Target-wave pattern and Honeycomb pattern are obtained. The electrical and optical properties of several types of pattern are analyzed. The spatio-temporal evolutionary behavior of the Loop Dot-matrix Concentric-roll pattern is focused on using an intensified charge-coupled device (ICCD), and the formation mechanism of the pattern is theoretically analyzed. The results show that the discharge pattern has a radial development with a gradual breakdown process from the outside to the inside. It is related to the pre-ionization effect of the narrow gap on the discharge. The emission spectra of different discharged filaments on the radial direction of Loop Dot-matrix Concentric-roll pattern are collected and analyzed. A spatially resolved diagnosis of plasma parameters is performed. It is found that the molecular vibrational temperature, electron density and electron temperature are much larger in narrow gap than those in wide gap. In the wide gap, the molecular vibration temperature, electron density and electron temperature gradually increase along the radial direction from the inside to the outside, but the changes are relatively small. At the narrow gap, the parameters such as the molecules vibration temperature, electron density and electron temperature farther from the center of the circle are smaller than those of closer to the center of the circle. This is related to the micro-change of the electric field.
  • [1]

    Navratil Z, Brandenburg R, Trunec D, Brablec A, St’ahel P, Wagner H E, Kopecky Z 2006 Plasma Sources Sci. Technol. 15 8

    [2]

    Li J Y, Zhou D S, Rebrov E, Tang X, Kim M 2024 J. Phys. D: Appl. Phys. 57 395201

    [3]

    Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504

    [4]

    Zhao X E, Hao W R 2024 Math. Biosci. 374 109222

    [5]

    Floyd C, Dinner A R, Vaikuntanathan S 2024 Phys. Rev. Res. 6 033100

    [6]

    Reyes L I, Pérez L M, Pedraja-Rejas L, Díaz P, Mendoza J, Bragard J, Clerc M G, Laroze D 2024 Chaos, Solitons Fractals 186 115244

    [7]

    Nath R, Santos L 2010 Phys. Rev 81 033626

    [8]

    Otsuka K 1989 Opt. Lett. 14 925

    [9]

    Vorontsov M A, Firth W J 1994 Phys. Rev. A 49 2891

    [10]

    Thomas M, Borris J, Dohse A, Eichler M, Hinze A, Lachmann K, Nagel K, Klages C P 2012 Plasma Process. Polym. 9 1086

    [11]

    Wang H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203 (in Chinese) [万海容,郝艳捧,房强,苏恒炜,阳林,李立浧 2020 物理学报 69 145203]

    [12]

    Feng J Y, Pan Y Y, Li C X, Liu B B, Dong L F 2020 Phys. Plasmas 27 063516

    [13]

    Bhoj A N, Kolobov V I 2011 IEEE Trans. Plasma Sci. 39 2152

    [14]

    Duan X X, Xu S W, Liu J, He F, Ouyang J T 2011 IEEE Trans. Plasma Sci. 39 2074

    [15]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517

    [16]

    Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Yin Z Q 2018 Phys. Plasmas 25 013512

    [17]

    Li Z Y, Jin S H, Xian Y B, Nie L L, Liu D W, Lu X P 2021 Plasma Sources Sci. Technol. 30 065026

    [18]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003

    [19]

    Zhang J H, Pan Y Y, Feng J Y, He Y N, Chu J H, Dong L F 2023 Plasma Sci. Technol. 25 025406

    [20]

    Noma Y, Choi J H, Stauss S, Tomai T, Terashima K 2008 Appl. Phys. Express 1 046001

    [21]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [22]

    Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502

    [23]

    Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502

    [24]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507

    [25]

    Dong L F, Shang J, Song Q, Fan W L, Ji Y F 2012 IEEE Trans. Plasma Sci. 40 1162

    [26]

    Liu W B, Dong L F, Wang Y J, Zhang H, Pan Y Y 2016 Phys. Plasmas 23 082307

    [27]

    Fan W L, Jia M M, Zhu P L, Liu C Y, Hou X H, Zhang J F, He Y F, Liu F C 2022 APL Photon. 7 116105

    [28]

    Guo L T, Pan Y Y, Yu G L, Wang Z Y, Gao K Y, Fan W L, Dong L F 2023 Plasma Sci. Technol. 25 085501

    [29]

    Demaude A, Baert K, Petitjean D, Zveny J, Goormaghtigh E, Hauffman T, Gordon M J, Reniers F 2022 Adv. Sci. 9 2200237

    [30]

    Yang L Z, Liu Z W, Mao Z G, Li S, Chen Q 2017 Jpn. J. Appl. Phys. 56 01AC02

    [31]

    Dong L F, Zhu P, Yang J, Li B 2015 High Volt.Eng. 41 2856 (in Chinese) [董丽芳,朱平,杨京,李犇 2015 高电压技术 41 2856]

    [32]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808

    [33]

    Sun H Y, Dong L F, Liu F C, Mi Y L, Han R, Huang J Y, Liu B B, Hao F, Pan Y Y 2018 Phys. Plasmas 25 113507

    [34]

    Yu G L, Dong L F, Dou Y Y, Mi Y L, Liu B B, Li C X, Pan Y Y 2019 Phys. Plasmas 26 023507

    [35]

    Dong L F, Lu N, Shang J, Liu L, Li X C 2011 IEEE Trans. Plasma Sci. 39 2156

    [36]

    Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2

    [37]

    Duan X X, He F, Ouyang J T 2012 Plasma Sources Sci. Technol. 21 015008

    [38]

    Li C X, Feng J Y, Wang SC, Li C, Ran J X, Pan Y Y, Dong L F 2024 Plasma Sci.Technol. 26 085401

    [39]

    Yao J X, Miao J S, Li J X, Lian X Y, Ouyang J T 2023 Appl. Phys. Lett. 122 082905

    [40]

    Ran J X, Luo H Y, Wang X X,2011 High Volt.Eng. 37 1486 (in Chinese) [冉俊霞,罗海云,王新新 2011 高电压技术 37 1486]

    [41]

    Liu S H, Neiger M 2003 J. Phys. D:Appl. Phys. 36 3144

    [42]

    Liu J, Yang Y, Nie L, Liu D, Lu X 2024 J. Phys. D: Appl. Phys. 57 275201

    [43]

    Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y, Li X C 2022 J. Phys. D: Appl. Phys. 55 015203

    [44]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断. 物理学报, doi: 10.7498/aps.74.20250111
    [2] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究. 物理学报, doi: 10.7498/aps.73.20230712
    [3] 肖江平, 戴栋, Victor F. Tarasenko, 邵涛. 大气压空气纳秒脉冲板-板放电中逃逸电子产生机理. 物理学报, doi: 10.7498/aps.72.20222409
    [4] 万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧. 大气压氦气介质阻挡放电单-多柱演化动力学. 物理学报, doi: 10.7498/aps.69.20200473
    [5] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究. 物理学报, doi: 10.7498/aps.62.104702
    [6] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, doi: 10.7498/aps.60.065205
    [7] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, doi: 10.7498/aps.60.065206
    [8] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [9] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, doi: 10.7498/aps.58.4806
    [10] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, doi: 10.7498/aps.57.1802
    [11] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, doi: 10.7498/aps.57.1001
    [12] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, doi: 10.7498/aps.56.7078
    [13] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, doi: 10.7498/aps.56.1471
    [14] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图. 物理学报, doi: 10.7498/aps.56.3332
    [15] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.55.5969
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, doi: 10.7498/aps.55.5923
    [17] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  45
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-21

/

返回文章
返回