搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复动量表象方法研究29Ne基态结构与中子晕特征

王兴豪 罗雨轩 刘泉

引用本文:
Citation:

复动量表象方法研究29Ne基态结构与中子晕特征

王兴豪, 罗雨轩, 刘泉

Ground-State Structure and Neutron Halo in 29Ne: A Complex-Momentum Representation Study

WANG Xinghao, LUO Yuxuan, LIU Quan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 29Ne作为$N=20$“反转岛”核区的关键核素, 其基态价中子组态表现出与传统壳模型预期($f_{7/2}$轨道主导)相悖的$p_{3/2}$ 轨道主导特征, 并可能具有晕核结构. 本研究基于相对论框架下的复动量表象(CMR)方法, 系统分析了29Ne在四极形变($\beta_2$)影响下的单粒子能级演化、轨道占据概率及径向密度分布. 计算结果表明: 在球形极限($\beta_2=0$)下, $2p_{1/2}$和$2p_{3/2}$能级显著下移至$1f_{7/2}$能级下方, 形成典型的壳层反转; 当$\beta_2 \geqslant 0.58$ 时, 价中子占据由$1f_{7/2}$分裂而成的$3/2[321]$轨道, 但其主要组分为$p_{3/2}$(占比68%), 且径向密度分布显著弥散, 符合晕核特征. 这些结果揭示了29Ne的p波主导机制与形变协同作用对晕结构形成的影响, 为反转岛核区的壳层演化提供了新的理论依据.
    Purpose The neutron-rich nucleus 29Ne, located in the $N = 20$ “island of inversion,” challenges traditional shell-model predictions by exhibiting a ground-state valence neutron configuration dominated by the $2p_{3/2}$ orbital instead of the expected $1f_{7/2}$ orbital. This study aims to unravel the mechanisms behind this shell inversion and explore the potential halo structure in 29Ne, leveraging the interplay between weak binding, deformation, and low-$\ell$ orbital occupancy. Methods We employ the complex-momentum representation (CMR) method within a relativistic framework, combining relativistic mean-field (RMF) theory with Woods-Saxon potentials to describe bound states, resonances, and continuum states. The model incorporates quadrupole deformation ($\beta_2$) to analyze single-particle energy evolution, orbital mixing, and radial density distributions. Key parameters are calibrated to experimental data, including binding energies and neutron separation energies. Key Results 1. Shell Inversion: In the spherical limit ($\beta_2 = 0$), the $2p_{1/2}$ and $2p_{3/2}$ orbitals drop below the $1f_{7/2}$ orbital, confirming the collapse of the $N = 20$ shell gap (see Figure below).2. Deformation-Driven Halo: For $\beta_2 \geqslant 0.58$, the valence neutron occupies the $3/2[321]$ orbital (derived from $1f_{7/2}$), but with 68% $p_{3/2}$ components due to strong $\ell$-mixing. This orbital exhibits a diffuse radial density distribution, signaling a halo structure.3. Experimental Consistency: The predicted ground-state spin-parity ($3/2^-$) and low separation energy (~1 MeV) align with measurements, supporting 29Ne as a deformation-induced halo candidate. Conclusions The study demonstrates that 29Ne’s anomalous structure arises from the synergy of p-wave dominance and quadrupole deformation, which reduces centrifugal barriers and enhances spatial dispersion. The CMR method provides a unified description of bound and resonant states, offering new insights into the island of inversion and halo formation. Future work will incorporate pairing correlations and experimental validation of density distributions. Significance This work advances the understanding of exotic nuclear structures near drip lines and highlights the role of deformation in halo phenomena, with implications for future experiments probing neutron-rich nuclei.
  • 图 1  复动量平面上$ \Omega^\pi = 1/2^- $态在$ \beta_2 = 0.2 $时的单粒子谱图. 红色空心圆形($ \circ $)、蓝色空心方形($ \square $)、绿色空心菱形($ \diamond $)和棕色空心三角($ \triangle $)分别代表从四条不同积分路径上分离出的共振态

    Fig. 1.  Single-particle spectrum of $ \Omega^\pi = 1/2^- $ states in the complex momentum plane at $ \beta_2 = 0.2 $. The red hollow circles ($ \circ $), blue hollow squares ($ \square $), green hollow diamonds ($ \diamond $), and brown hollow triangles ($ \triangle $) represent resonance states extracted from four different integration paths, respectively.

    图 2  29Ne自旋宇称$ \Omega^\pi = 1/2^\pm $、$ 3/2^\pm $、$ 5/2^\pm $、$ 7/2^\pm $、$ 9/2^\pm $的单粒子态在$ \beta_2 = -0.1 $、$ 0.0 $、$ 0.1 $、$ 0.2 $下的单粒子谱. 黑色空心圆和暗红色实线分别表示动量积分的连续域边界和积分轮廓线, 其它颜色符号表示计算得到的共振态

    Fig. 2.  Single-particle spectra of $ ^{29} {\rm{Ne}}$ for spin-parity $ \Omega^\pi = 1/2^\pm $, $ 3/2^\pm $, $ 5/2^\pm $, $ 7/2^\pm $, $ 9/2^\pm $ at $ \beta_2 = -0.1 $, 0.0, 0.1, 0.2. The black hollow circles and dark red solid lines denote the continuum boundaries and integration contours of momentum, respectively, while other colored symbols indicate calculated resonance states.

    图 3  29Ne的单粒子能级随形变参数$ \beta_2 $的演化. 束缚能级(实线)和共振能级(虚线)用尼尔森标记$ \Omega[Nn_z\Lambda] $标识, $ \beta_2 = 0.0 $处标有球形壳层标签

    Fig. 3.  Evolution of single-particle energy levels in $ ^{29} {\rm{Ne}}$ as a function of deformation parameter $ \beta_2 $. Bound levels (solid lines) and resonance levels (dashed lines) are labeled with Nilsson notation $ \Omega[Nn_z\Lambda] $, with spherical shell-model labels marked at $ \beta_2 = 0.0 $.

    图 4  29Ne中$ 3/2[321] $单粒子态的主要球基组分占比随$ \beta_2 $的演化

    Fig. 4.  Percentage contributions of major spherical components to the $ 3/2[321] $ single-particle state in $ ^{29} {\rm{Ne}}$ as a function of $ \beta_2 $.

    图 5  在$ \beta_2 = 0.60 $时, 29Ne中$ 3/2[321] $轨道、$ 1/2[310] $轨道和$ 5/2[202] $轨道的径向密度分布

    Fig. 5.  Radial density distributions of the $ 3/2[321] $, $ 1/2[310] $, and $ 5/2[202] $ orbitals in $ ^{29} {\rm{Ne}}$ at $ \beta_2 = 0.60 $.

  • [1]

    Haxel O, Jensen J H D, Suess H E 1949 Phys. Rev. 75 1766

    [2]

    Mayer M G 1949 Phys. Rev. 75 1969Google Scholar

    [3]

    丁斌刚, 张大立, 鲁定辉 2009 物理学报 58 865Google Scholar

    Ding B G, Zhang D L, Lu D H 2009 Acta Phys. Sin. 58 865Google Scholar

    [4]

    孙帅, 安荣, 祁淼, 曹李刚, 张丰收 2025 物理学报 74 032101Google Scholar

    Sun S, An R, Qi M, Cao L G, Zhang F S 2025 Acta Phys. Sin. 74 032101Google Scholar

    [5]

    Poves A, Retamosa J 1987 Phys. Lett. B 184 311Google Scholar

    [6]

    Tripathi V, Tabor S L, Mantica P F, et al 2007 Phys. Rev. C 76 021301(RGoogle Scholar

    [7]

    Brown B A 2001 Prog. Part. Nucl. Phys. 47 517Google Scholar

    [8]

    Otsuka T, Honma M, Mizusaki T, Shimizu N, Utsuno Y 2001 Prog. Part. Nucl. Phys. 47 319Google Scholar

    [9]

    Liu H N, Lee J, Doornenbal P, et al 2017 Phys. Lett. B 767 58Google Scholar

    [10]

    Zhi Q J, Zhang X P 2009 Nucl. Phys. Rev. 26 275

    [11]

    Warturbon E K, Becker J A, Brown B A 1990 Phys. Rev. C 41 1147Google Scholar

    [12]

    Moiseyev N, Corcoran C 1979 Phys. Rev. A 20 814Google Scholar

    [13]

    刘建业, 郭文军, 邢永忠, 李希国, 左维 2006 物理学报 55 1068Google Scholar

    Liu J Y, Guo W J, Xing Y Z, Li X G, Zuo W 2006 Acta Phys. Sin. 55 1068Google Scholar

    [14]

    Tanihata I, Hamagaki H, Hashimoto O, et al 1985 Phys. Rev. Lett. 55 2676Google Scholar

    [15]

    Sagawa H 1992 Phys. Lett. B 286 7Google Scholar

    [16]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [17]

    Pöschl W, Vretenar D, Lalazissis G A, Ring P 1997 Phys. Rev. Lett. 79 3841Google Scholar

    [18]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460Google Scholar

    [19]

    林承键, 张焕乔, 刘祖华, 吴岳伟, 杨峰, 阮明 2003 物理学报 52 823Google Scholar

    Lin C J, Zhang H Q, Liu Z H, Wu Y W, Yang F, Ruan M 2003 Acta Phys. Sin. 52 823Google Scholar

    [20]

    Zhang H F, Gao Y, Wang N, Li J Q, Zhao E G, Royer G 2012 Phys. Rev. C 85 014325Google Scholar

    [21]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [22]

    Hamamoto I 2010 Phys. Rev. C 81 021304(RGoogle Scholar

    [23]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329Google Scholar

    [24]

    李楚良, 段宜武, 黄笃之 1994 物理学报 43 14Google Scholar

    Li C L, Duan Y W, Huang D Z 1994 Acta Phys. Sin. 43 14Google Scholar

    [25]

    任中洲, 徐躬耦 1991 物理学报 40 1229Google Scholar

    Ren Z Z, Xu G O 1991 Acta Phys. Sin. 40 1229Google Scholar

    [26]

    Tanihata I, Savajols H, Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215Google Scholar

    [27]

    Meng J, Zhou S G 2015 J. Phys. G: Nucl. Part. Phys. 42 093101Google Scholar

    [28]

    Nakamura T, Kobayashi N, Kondo Y, et al 2014 Phys. Rev. Lett. 112 142501Google Scholar

    [29]

    Hong J, Bertulani C A, Kruppa A T 2017 Phys. Rev. C 96 064603Google Scholar

    [30]

    Kobayashi N, Nakamura T, Kondo Y, et al 2016 Phys. Rev. C 93 014613Google Scholar

    [31]

    Li J G, Michel N, Li H H, Zuo W 2022 Phys. Lett. B 832 137225Google Scholar

    [32]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [33]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Rev. Lett. 59 763Google Scholar

    [34]

    Taylor J R 1972 Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (New York: Wiley).

    [35]

    Cao L J, Ma Z Y 2002 Phys. Rev. C 66 024311Google Scholar

    [36]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [37]

    Masui H, Aoyama S, Myo T, Katō K, Ikeda K 2000 Nucl. Phys. A 673 207Google Scholar

    [38]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [39]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [40]

    Li Z P, Meng J, Zhang Y, Zhou S G, Savushkin L N 2010 Phys. Rev. C 81 034311Google Scholar

    [41]

    Tanaka N, Suzuki Y, Varga K 1997 Phys. Rev. C 56 562Google Scholar

    [42]

    Zhang S S, Smith M S, Arbanas G, Kozub R L 2012 Phys. Rev. C 86 032802(RGoogle Scholar

    [43]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30Google Scholar

    [44]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324Google Scholar

    [45]

    Hazi A U, Taylor H S 1970 Phys. Rev. A 1 1109Google Scholar

    [46]

    Mandelshtam V A, Ravuri T R, Taylor H S 1993 Phys. Rev. Lett. 70 1932Google Scholar

    [47]

    Mandelshtam V A, Taylor H S, Rayboy V, Moiseyev N 1994 Phys. Rev. A 50 2764Google Scholar

    [48]

    Zhang L, Zhou S G, Meng J, Zhao E G 2008 Phys. Rev. C 77 014312Google Scholar

    [49]

    杨威, 丁士缘, 孙保元 2024 物理学报 73 062102Google Scholar

    Yang W, Ding S Y, Sun B Y 2024 Acta Phys. Sin. 73 062102Google Scholar

    [50]

    Matsuo M 2001 Nucl. Phys. A 696 371Google Scholar

    [51]

    Sun T T, Zhang S Q, Zhang Y, Hu J N, Meng J 2014 Phys. Rev. C 90 054321Google Scholar

    [52]

    Sun T T, Qian L, Chen C, Ring P, Li Z P 2020 Phys. Rev. C 101 014321Google Scholar

    [53]

    Chen C, Li Z P, Li Y X, Sun T T 2020 Chin. Phys. C 44 084105Google Scholar

    [54]

    Odsuren M, Kikuchi Y, Myo T, Khuukhenkhuu G, Masui H, Katō K 2017 Phys. Rev. C 95 064305

    [55]

    Myo T, Kikuchi Y, Masui H, Katō K 2014 Prog. Part. Nucl. Phys. 79 1Google Scholar

    [56]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [57]

    刘野, 陈寿万, 郭建友 2012 物理学报 61 112101Google Scholar

    Liu Y, Chen S W, Guo J Y 2012 Acta Phys. Sin. 61 112101Google Scholar

    [58]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [59]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311

    [60]

    Guo J Y, Liu Q, Niu Z M, Heng T H, Wang Z Y, Shi M, Cao X N 2018 Nucl. Phys. Rev. 35 401

    [61]

    Dai H M, Cao X N, Liu Q, Guo J Y 2020 Nucl. Phys. Rev. 37 574

    [62]

    Luo Y X, Fossez K, Liu Q, Guo J Y 2021 Phys. Rev. C 104 014307

    [63]

    Wei Y M, Liu Q 2023 Nucl. Phys. Rev. 40 188

    [64]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2001 Phys. Rev. Lett. 86 5015Google Scholar

    [65]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2002 Phys. Rev. C 65 034307Google Scholar

    [66]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C 55 540Google Scholar

    [67]

    王晓伟, 郭建友 2019 物理学报 68 092101Google Scholar

    Wang X W, Guo J Y 2019 Acta Phys. Sin. 68 092101Google Scholar

    [68]

    Luo Y X, Liu Q, Guo J Y 2023 Phys. Rev. C 108 024320Google Scholar

    [69]

    Cao X N, Ding K M, Shi M, Liu Q, Guo J Y 2020 Phys. Rev. C 102 044313Google Scholar

    [70]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316Google Scholar

    [71]

    孟杰 1993 物理学报 42 368Google Scholar

    Meng J 1993 Acta Phys. Sin. 42 368Google Scholar

    [72]

    Sun T T, Liu Z X, Qian L, Wang B, Zhang W 2019 Phys. Rev. C 99 054316Google Scholar

    [73]

    Kubota Y, Corsi A, Authelet G, et al 2020 Phys. Rev. Lett. 125 252501Google Scholar

    [74]

    Ragnarsson I, Nilsson S G, Sheline R K 1978 Phys. Rep. 45 1Google Scholar

    [75]

    Butler P. A., Nazarewicz W 1996 Rev. Mod. Phys. 68 349Google Scholar

  • [1] 杨威, 丁士缘, 孙保元. 基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型. 物理学报, doi: 10.7498/aps.73.20231632
    [2] 张冰, 刘志学, 徐万超. 四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光. 物理学报, doi: 10.7498/aps.62.164207
    [3] 刘野, 陈寿万, 郭建友. 复标度方法对原子核单粒子共振态的研究. 物理学报, doi: 10.7498/aps.61.112101
    [4] 王刚, 方向正, 郭建友. 相对论平均场理论对Pt同位素形状演化的研究. 物理学报, doi: 10.7498/aps.61.102101
    [5] 隋兵才, 方粮, 张超. 单岛单电子晶体管的电导分析. 物理学报, doi: 10.7498/aps.60.077302
    [6] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究. 物理学报, doi: 10.7498/aps.60.112101
    [7] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, doi: 10.7498/aps.58.8302
    [8] 董建敏, 李君清, 苏昕宁, 王艳召, 张鸿飞, 左维. 致密天体中电子气体对原子核结构的影响. 物理学报, doi: 10.7498/aps.58.2294
    [9] 陈 丽, 程玉民. 瞬态热传导问题的复变量重构核粒子法. 物理学报, doi: 10.7498/aps.57.6047
    [10] 陈 丽, 程玉民. 弹性力学的复变量重构核粒子法. 物理学报, doi: 10.7498/aps.57.1
    [11] 张 力, 周善贵, 孟 杰, 赵恩广. 单粒子共振态的实稳定方法研究. 物理学报, doi: 10.7498/aps.56.3839
    [12] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应. 物理学报, doi: 10.7498/aps.56.1339
    [13] 廖高华, 翁甲强, 成丽春, 方锦清. 束晕-混沌控制中的粒子跟踪模拟研究. 物理学报, doi: 10.7498/aps.54.35
    [14] 罗向东, 郑仁蓉, 朱顺泉. A=100区奇奇核旋称反转. 物理学报, doi: 10.7498/aps.52.1891
    [15] 沈水法, 石双惠, 顾嘉辉, 刘静怡, 沈文庆. Rb晕带signature反转的机理. 物理学报, doi: 10.7498/aps.52.48
    [16] 文家焱, 郑仁蓉, 朱顺泉. A=80区奇奇核的晕带能谱计算. 物理学报, doi: 10.7498/aps.48.433
    [17] 沈俊, 徐在新. 有限温度场论单粒子不可约图形的零动量行为. 物理学报, doi: 10.7498/aps.41.1072
    [18] 郑少白, A. J. WOOTTON. 试探粒子横越单一磁岛的扩散. 物理学报, doi: 10.7498/aps.39.94
    [19] 林尊琪, 陈文华, 余文炎, 谭维翰, 郑玉霞, 王关志, 顾敏, 章辉煌, 程瑞华, 崔季秀, 邓锡铭. MgⅪ 1s3p-1s4p能级间平均高温及高密度条件下的粒子数反转. 物理学报, doi: 10.7498/aps.37.1236
    [20] 储连元, 王德焴, 于敏. 满壳层外一个粒子原子核的能级. 物理学报, doi: 10.7498/aps.15.447
计量
  • 文章访问数:  180
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-12

/

返回文章
返回