搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag/BiFeO3/Fe2O3/ITO结构的电阻开关和负微分电阻

舒海燕 夏姝颖 张兴文 何朝滔 李世昌 邱晓燕 陈鹏

引用本文:
Citation:

Ag/BiFeO3/Fe2O3/ITO结构的电阻开关和负微分电阻

舒海燕, 夏姝颖, 张兴文, 何朝滔, 李世昌, 邱晓燕, 陈鹏
cstr: 32037.14.aps.74.20251004

Resistive switching and negative differential resistance effects in Ag/BiFeO3/Fe2O3/ITO structures with various thicknesses of Fe2O3 layer

SHU Haiyan, XIA Shuying, ZHANG Xingwen, HE Chaotao, LI Shichang, QIU Xiaoyan, CHEN Peng
cstr: 32037.14.aps.74.20251004
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文采用磁控溅射法制备了Ag/BiFeO3/Fe2O3/ITO多层结构, 并系统研究了Fe2O3层厚度对其电学特性的调控作用. 实验发现, 不同Fe2O3层厚度的器件均表现出稳定的双极性电阻开关行为. I-V特性拟合分析表明, 其电阻转变机制源于Ag活性电极在外电场作用下形成/断裂的导电细丝. 此外, 器件在多次循环中均呈现可重复的负微分电阻现象, 该现象与氧空位迁移及局域焦耳热效应导致的细丝不稳定过程密切相关. 本研究为通过界面工程调控阻变存储器性能提供了可行的材料体系与物理机制理解.
    In this paper, the resistive switching characteristics of Ag/BiFeO3/Fe2O3/ITO multilayer film deposited on ITO by magnetron sputtering are investigated. The Ag/BiFeO3/Fe2O3/ITO devices all exhibit superior resistive switching behaviors due to the formation of Ag conducting filaments. The resistive switching ratio of the device is close to 10 for the sample with 100 nm-thick Fe2O3 film. The current value of the device increases sharply at 0.56 V when the voltage is swept forward, and the device switches from LRS back to HRS at –0.3 V when a voltage of opposite polarity is applied. The I-V curves of the device are fitted in double logarithmic coordinates. It is found that the device is controlled by an Ohmic conduction model in the low resistance state and by two conduction models in the high resistance state: Ohmic conduction in the low bias region, and the SCLC conduction model at higher voltages. Such a resistive switching characteristic with very low switching voltage and a high resistance ratio is particularly important for the application of resistive stochastic storage. In addition, all samples show an obvious negative differential resistance effect, which is caused by Joule heating. The Ag/BiFeO3/Fe2O3/ITO device show both resistive switching characteristics and a negative differential resistance effect, which have important applications.
      通信作者: 陈鹏, pchen@swu.edu.cn
      Corresponding author: CHEN Peng, pchen@swu.edu.cn
    [1]

    Weitz R T, Walter A, Engl R, Sezi R, Dehm C 2006 Nano Lett. 6 2810Google Scholar

    [2]

    Li X L, Jia J, Li Y C, Bai Y H, Li J, Shi Y N, Wang L F, Xu X H 2016 Sci. Rep. 6 31934Google Scholar

    [3]

    Bibes M, Barthélémy A 2008 Nat. Mater. 7 425Google Scholar

    [4]

    Miyake M, Scott J F, Lou X J, Morrison F D, Nonaka T, Motoyama S, Tatsuta T, Tsuji O 2008 J. Appl. Phys. 104 064112Google Scholar

    [5]

    Jensen W B 1997 J. Chem. Edu. 74 1063Google Scholar

    [6]

    Neale R G, Nelson D L, Moore G E 1970 Electronics 43 56

    [7]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [8]

    Jeong D S, Choi B J, Hwang C S 2006 J. Appl. Phys. 100 113724Google Scholar

    [9]

    Yu S M, Guan X M, Wong H S P 2011 Appl. Phys. Lett. 99 063507Google Scholar

    [10]

    Hui F, Grustan-Gutierrez E, Long S B, Liu Q, Ott A K, Ferrari A C, Lanza M 2017 Adv. Electron. Mater. 3 1600195Google Scholar

    [11]

    Waser R 2012 J. Nanosci. Nanotechnol. 12 7628Google Scholar

    [12]

    Kim D C, Seo S, Ahn S E, Suh D S, Lee M J, Park B H, Yoo I K, Baek I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T, Ryu B I 2006 Appl. Phys. Lett. 88 202102Google Scholar

    [13]

    Mahapatra R, Maji S, Horsfall A B, Wright N G 2015 Microelectron. Eng. 138 118Google Scholar

    [14]

    Lee J S, Lee S, Noh T W 2015 App. Phys. Rev. 2 031303Google Scholar

    [15]

    Yoo H G, Kim S, Lee K J 2014 RSC Adv. 4 20017Google Scholar

    [16]

    Zhang W B, Wang C, Liu G, Wang J, Chen Y, Li R W 2014 Chem. Commun. 50 11496Google Scholar

    [17]

    He C T, Lu Y, Li X L, Chen P 2022 Acta Phys. Sin. 71 086102 [何朝滔, 卢羽, 李秀林, 陈鹏 2022 物理学报 71 086102]Google Scholar

    He C T, Lu Y, Li X L, Chen P 2022 Acta Phys. Sin. 71 086102Google Scholar

    [18]

    Zhang X W, He C T, Li X L, Qiu X Y, Zhang Y, Chen P 2022 Acta Phys. Sin. 71 187303 [张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏 2022 物理学报 71 187303]Google Scholar

    Zhang X W, He C T, Li X L, Qiu X Y, Zhang Y, Chen P 2022 Acta Phys. Sin. 71 187303Google Scholar

    [19]

    Guo T, Sun B, Zhou Y, Zhao H B, Lei M, Zhao Y 2018 PCCP 20 20635Google Scholar

    [20]

    Prakash C, Yadav A K, Dixit A 2023 Phys. Chem. Chem. Phys. 25 19868Google Scholar

    [21]

    Zhang K J, Ren K, Qin X Z, Zhu S H, Yang F, Zhao Y, Zhang Y 2021 IEEE Trans. Electron Dev. 68 3807Google Scholar

    [22]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 318Google Scholar

    [23]

    Kumar S, Williams R S, Wang Z 2020 Nature 585 518Google Scholar

    [24]

    Zhou G D, Gu D S, Ye J, Sun B, Shi H, Ran H, Ji'e M, Hu X, Wang L, Duan S, Ling H 2025 Adv. Mater. 37 e08107Google Scholar

    [25]

    Zhou G D, Duan S K, Li P, Sun B, Wu B, Yao Y Q, Yang X D, Han J J, Wu J G, Wang G, Liao L P, Lin C Y, Hu W, Xu C Y, Liu D B, Chen T, Chen L J, Zhou A K, Song Q L 2018 Adv. Electron. Mater. 4 1700567Google Scholar

    [26]

    Shuai Y, Zhou S Q, Bürger D, Helm M, Schmidt H 2011 J. Appl. Phys. 109 124117Google Scholar

    [27]

    Zheng P P, Sun B, Chen Y Z, Elshekh H, Yu T, Mao S S, Zhu S H, Wang H Y, Zhao Y, Yu Z 2019 Appl. Mater. Today 14 21Google Scholar

    [28]

    Lu Y, Tang Y Y, Li X L, He C T, Chen P 2022 App. Phys. A-Mater. 128 229Google Scholar

    [29]

    Tang M, Sun B, Huang J, Gao J, Li C M 2016 RSC Adv. 6 25028Google Scholar

  • 图 1  (a) Ag/BiFeO3/Fe2O3/ITO的结构图; (b) Fe2O3层厚度约为100 nm时器件的SEM截面

    Fig. 1.  (a) Schematic diagram of the Ag/BiFeO3/Fe2O3/ITO structure; (b) cross-sectional SEM image of the device with Fe2O3 layer thickness of approximately 100 nm.

    图 2  (a) Fe2O3层厚为100 nm的BFO/Fe2O3/ITO的I-V曲线; (b) 对应于(a)周期的半对数尺度I-V曲线; (c) Fe2O3层厚为200 nm器件的BFO/Fe2O3/ITO的I-V曲线; (d) 对应于(c)周期的半对数尺度I-V曲线; (e) Fe2O3层厚为300 nm器件中BFO/Fe2O3/ITO的I-V曲线; (f) 对应于(e)周期的半对数尺度I-V曲线

    Fig. 2.  (a) I-V characteristics of BFO/Fe2O3/ITO with 100 nm-thick Fe2O3; (b) semi-log scale I-V curve corresponding to (a); (c) I-V characteristics of BFO/Fe2O3/ITO device with 200 nm-thick Fe2O3; (d) semi-log scale I-V curve corresponding to (c); (e) I-V characteristics of BFO/Fe2O3/ITO in the device with 300 nm-thick Fe2O3; (f) semi-log scale I-V curve corresponding to (e).

    图 3  正扫描电压下BFO/Fe2O3/ITO的I-V双对数拟合图 (a) Fe2O3层的厚度约为100 nm; (b) Fe2O3层的厚度约为200 nm; (c) Fe2O3层的厚度约为300 nm

    Fig. 3.  Double-logarithmic fitting plots of I-V characteristics for BFO/Fe2O3/ITO under forward voltage scanning, with Fe2O3 layer thicknesses of (a) ~100 nm, (b) ~200 nm, and (c) ~300 nm.

    图 4  Fe2O3层厚约为100 nm的BFO/Fe2O3/ITO器件表现出优异的RS行为和稳定的NDR效应, 具有RRAM器件的潜力, 设备的稳定性是衡量设备性能的标准之一

    Fig. 4.  The BFO/Fe2O3/ITO device with ~100 nm-thick Fe2O3 layer demonstrates excellent resistive switching (RS) behavior and stable negative differential resistance (NDR) effect, indicating potential for RRAM applications. Device stability serves as a key performance metric.

    图 5  厚度为100 nm的BFO/Fe2O3/ITO器件的70个连续开关周期 (a) 70循环的I-V曲线; (b) 70次循环的高低电阻比

    Fig. 5.  Seventy consecutive resistive switching cycles of the BFO/Fe2O3/ITO device with ~100 nm-thick Fe2O3 layer: (a) I-V curves for seventy cycles; (b) high-to-low resistance ratio.

  • [1]

    Weitz R T, Walter A, Engl R, Sezi R, Dehm C 2006 Nano Lett. 6 2810Google Scholar

    [2]

    Li X L, Jia J, Li Y C, Bai Y H, Li J, Shi Y N, Wang L F, Xu X H 2016 Sci. Rep. 6 31934Google Scholar

    [3]

    Bibes M, Barthélémy A 2008 Nat. Mater. 7 425Google Scholar

    [4]

    Miyake M, Scott J F, Lou X J, Morrison F D, Nonaka T, Motoyama S, Tatsuta T, Tsuji O 2008 J. Appl. Phys. 104 064112Google Scholar

    [5]

    Jensen W B 1997 J. Chem. Edu. 74 1063Google Scholar

    [6]

    Neale R G, Nelson D L, Moore G E 1970 Electronics 43 56

    [7]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [8]

    Jeong D S, Choi B J, Hwang C S 2006 J. Appl. Phys. 100 113724Google Scholar

    [9]

    Yu S M, Guan X M, Wong H S P 2011 Appl. Phys. Lett. 99 063507Google Scholar

    [10]

    Hui F, Grustan-Gutierrez E, Long S B, Liu Q, Ott A K, Ferrari A C, Lanza M 2017 Adv. Electron. Mater. 3 1600195Google Scholar

    [11]

    Waser R 2012 J. Nanosci. Nanotechnol. 12 7628Google Scholar

    [12]

    Kim D C, Seo S, Ahn S E, Suh D S, Lee M J, Park B H, Yoo I K, Baek I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T, Ryu B I 2006 Appl. Phys. Lett. 88 202102Google Scholar

    [13]

    Mahapatra R, Maji S, Horsfall A B, Wright N G 2015 Microelectron. Eng. 138 118Google Scholar

    [14]

    Lee J S, Lee S, Noh T W 2015 App. Phys. Rev. 2 031303Google Scholar

    [15]

    Yoo H G, Kim S, Lee K J 2014 RSC Adv. 4 20017Google Scholar

    [16]

    Zhang W B, Wang C, Liu G, Wang J, Chen Y, Li R W 2014 Chem. Commun. 50 11496Google Scholar

    [17]

    He C T, Lu Y, Li X L, Chen P 2022 Acta Phys. Sin. 71 086102 [何朝滔, 卢羽, 李秀林, 陈鹏 2022 物理学报 71 086102]Google Scholar

    He C T, Lu Y, Li X L, Chen P 2022 Acta Phys. Sin. 71 086102Google Scholar

    [18]

    Zhang X W, He C T, Li X L, Qiu X Y, Zhang Y, Chen P 2022 Acta Phys. Sin. 71 187303 [张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏 2022 物理学报 71 187303]Google Scholar

    Zhang X W, He C T, Li X L, Qiu X Y, Zhang Y, Chen P 2022 Acta Phys. Sin. 71 187303Google Scholar

    [19]

    Guo T, Sun B, Zhou Y, Zhao H B, Lei M, Zhao Y 2018 PCCP 20 20635Google Scholar

    [20]

    Prakash C, Yadav A K, Dixit A 2023 Phys. Chem. Chem. Phys. 25 19868Google Scholar

    [21]

    Zhang K J, Ren K, Qin X Z, Zhu S H, Yang F, Zhao Y, Zhang Y 2021 IEEE Trans. Electron Dev. 68 3807Google Scholar

    [22]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 318Google Scholar

    [23]

    Kumar S, Williams R S, Wang Z 2020 Nature 585 518Google Scholar

    [24]

    Zhou G D, Gu D S, Ye J, Sun B, Shi H, Ran H, Ji'e M, Hu X, Wang L, Duan S, Ling H 2025 Adv. Mater. 37 e08107Google Scholar

    [25]

    Zhou G D, Duan S K, Li P, Sun B, Wu B, Yao Y Q, Yang X D, Han J J, Wu J G, Wang G, Liao L P, Lin C Y, Hu W, Xu C Y, Liu D B, Chen T, Chen L J, Zhou A K, Song Q L 2018 Adv. Electron. Mater. 4 1700567Google Scholar

    [26]

    Shuai Y, Zhou S Q, Bürger D, Helm M, Schmidt H 2011 J. Appl. Phys. 109 124117Google Scholar

    [27]

    Zheng P P, Sun B, Chen Y Z, Elshekh H, Yu T, Mao S S, Zhu S H, Wang H Y, Zhao Y, Yu Z 2019 Appl. Mater. Today 14 21Google Scholar

    [28]

    Lu Y, Tang Y Y, Li X L, He C T, Chen P 2022 App. Phys. A-Mater. 128 229Google Scholar

    [29]

    Tang M, Sun B, Huang J, Gao J, Li C M 2016 RSC Adv. 6 25028Google Scholar

  • [1] 朱媛媛, 杨梓怡, 杨淑宁, 张云飞, 张苗, 王鑫, 王红军, 徐静. 基于氧空位调控的HfOx忆阻器稳定性研究. 物理学报, 2025, 74(21): 217301. doi: 10.7498/aps.74.20250971
    [2] 陈涛, 张涛, 殷元祥, 谢雨莎, 邱晓燕. HfO2/NiOx/HfO2堆栈的三电阻态开关特性与导电机制. 物理学报, 2023, 72(14): 148401. doi: 10.7498/aps.72.20230331
    [3] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究. 物理学报, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [4] 何朝滔, 卢羽, 李秀林, 陈鹏. 限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控. 物理学报, 2022, 71(8): 086102. doi: 10.7498/aps.71.20211999
    [5] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [6] 辛建国, 杨传路, 王美山, 马晓光. (CH3)2和(NH2)2基团修饰的齐聚苯乙炔分子电子输运性质研究. 物理学报, 2016, 65(7): 073102. doi: 10.7498/aps.65.073102
    [7] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [8] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究. 物理学报, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [9] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [10] 李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国. 下电极对ZnO薄膜电阻开关特性的影响. 物理学报, 2013, 62(7): 077202. doi: 10.7498/aps.62.077202
    [11] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [12] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响. 物理学报, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [13] 程霞, 杨传路, 童小菲, 王美山, 马晓光. Na掺杂对C20H20分子的电子输运性质影响. 物理学报, 2011, 60(1): 017302. doi: 10.7498/aps.60.017302
    [14] 冯朝文, 蔡理, 张立森, 杨晓阔, 赵晓辉. SETMOS在蔡氏电路中的特性研究. 物理学报, 2010, 59(12): 8420-8425. doi: 10.7498/aps.59.8420
    [15] 冯朝文, 蔡理, 张立森, 杨晓阔, 赵晓辉. SETMOS实现多涡卷蔡氏电路的研究. 物理学报, 2010, 59(12): 8426-8431. doi: 10.7498/aps.59.8426
    [16] 朱樟明, 钟波, 杨银堂. 基于RLCπ型等效模型的互连网络精确焦耳热功耗计算. 物理学报, 2010, 59(7): 4895-4900. doi: 10.7498/aps.59.4895
    [17] 刚建雷, 黎松林, 孟洋, 廖昭亮, 梁学锦, 陈东敏. 点接触金属/Pr0.7Ca0.3MnO3/Pt结构稳定的低电流电阻开关特性. 物理学报, 2009, 58(8): 5730-5735. doi: 10.7498/aps.58.5730
    [18] 冯朝文, 蔡 理, 李 芹. 基于单电子器件的细胞神经网络实现及应用研究. 物理学报, 2008, 57(4): 2462-2467. doi: 10.7498/aps.57.2462
    [19] 周艳红, 许 英, 郑小宏. 水分子对碳链的输运性质影响的第一性原理研究. 物理学报, 2007, 56(2): 1093-1098. doi: 10.7498/aps.56.1093
    [20] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件. 物理学报, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
计量
  • 文章访问数:  422
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-27
  • 修回日期:  2025-09-16
  • 上网日期:  2025-10-10

/

返回文章
返回