-
旋转辐条作为一种低频、长波长不稳定性, 广泛存在于磁控管、霍尔推力器等${\boldsymbol{E}} \times {\boldsymbol{B}}$放电装置中. 霍尔推力器中旋转辐条表现为位于放电通道中的明亮发光区域沿着角向旋转. 旋转辐条不稳定性引起的空间电势扭曲, 提高了在${\boldsymbol{E}} \times {\boldsymbol{B}}$作用下沿电势等势线漂移运动的电子到达阳极的概率, 增加了电子的轴向输运. 本文利用轴向-角向的二维粒子-流体混合模型研究了霍尔推力器放电通道中的轴向磁场梯度对旋转辐条不稳定性的影响. 采用包含等离子体密度梯度和磁场梯度效应的色散关系, 结合模拟得到的离子密度分布、电势分布、电场分布对模拟结果进行分析. 模拟结果表明, 随着放电通道内磁场梯度的减小, 模数$m = 1$的旋转辐条不稳定性的频率和传播速度会轻微的增大, 但不会对旋转辐条的传播方向和本质特征产生影响. 结合色散关系的分析结果表明, 密度梯度和磁场梯度共同驱动的角向漂移不稳定性是旋转辐条的诱发因素. 磁场改变引起的离子密度分布的变化对诱发旋转辐条的角向漂移不稳定性出现的轴向位置有轻微的影响, 但始终位于推力器出口下游附近. 结果表明旋转辐条不稳定性不属于电离不稳定性, 且改变放电通道内的磁场分布不会对旋转辐条的传播方向和模数产生影响. 本研究结果为明确旋转辐条的激发机制及其影响因素提供了理论支撑.Rotating spokes, as one of the low-frequency, long-wavelength instabilities, are commonly observed in the ${\boldsymbol{E}} \times {\boldsymbol{B}}$ plasma discharge devices, such as the magnetrons and Hall thrusters. In Hall thrusters, the rotating spokes, which are located in the discharge channel and rotate in the azimuthal direction, feature the bright luminous regions. The space potential will be distorted by the instability of rotating spokes, thereby increasing the possibility for electrons to reach the anode and enhancing their drift along the equipotential lines. However, the excitation mechanism of the rotating spoke and its influencing factors remain ambiguous. In order to address this problem, we conduct numerical simulations and linear stability analysis to investigate the effects of the magnetic field gradient on the driving mechanism and mode characteristics of the rotating spoke instability. In this work, a particle-fluid two-dimensional hybrid model in the axial-azimuthal plane is employed to numerically study the effect of axial magnetic field gradient in the discharge channel on the rotating spoke. The numerical simulation results are analyzed using a dispersion relation derived from fluid theory, which combines the effects of plasma density and the magnetic field gradient. The output profiles of ion density, potential, and electric field from the numerical simulation serve as input parameters for the dispersion relation used in the linear stability analysis. The simulation results show that the frequency and propagation velocity of the $m = 1$ rotating spoke slightly increase as the magnetic field gradient in the discharge channel decreases. However, changing the magnetic field gradient in the discharge channel does not affect the propagation direction nor intrinsic characteristics of the rotating spoke. More specifically, when the value of ${\alpha _1}$increases from 1.1 to 1.7, which means a decrease of the magnetic field gradient in the discharge channel, the mode frequency rises from 6.2 kHz to 7.5 kHz, remaining within the frequency range of the rotating spoke instability. At the same time, the phase velocity also increases form 1013 m/s to 1225 m/s, which is consistent with the propagation velocity of the rotating spoke instability, and the rotating spoke instability still propagates along the ${\boldsymbol{E}} \times {\boldsymbol{B}}$ direction. Dispersion relation analysis indicates that the rotating spoke arises from an azimuthal drift instability which is located near downstream region of the thruster exit, and it is excited by the plasma density and magnetic field gradient effects. The axial position of the azimuthal drift instability, responsible for the rotating spoke formation, is slightly modulated by density profile variations caused by the change of magnetic field in the discharge channel. However, it remains near the downstream region of the thruster exit. The results indicate that the rotating spoke does not originate from ionization instabilities, and changing the magnetic field distribution in the discharge channel does not affect its propagation direction nor mode number. The research results provide theoretical support for explaining the excitation mechanism and key influencing factors of rotating spoke.
-
Keywords:
- Hall thruster /
- rotating spokes /
- density gradient /
- magnetic gradient /
- dispersion relation
-
图 2 ${\alpha _1} = 1.1$时离子数密度(a)、电离率(b)、中性原子数密度(c)、电势(d)、轴向电场(e), 角向电场(f)在一个周期内不同时刻的分布
Fig. 2. Distribution of ion number density (a), ionization rate (b), neutral particle number density (c), electrical potential (d), axial electric field (e), and azimuthal electric field (f) at different time in one period for ${\alpha _1} = 1.1$.
图 5 ${\alpha _1} = 1.1$, 1.3, 1.5, 1.7时的(a)离子密度分布, (b)空间电势分布, (c)电场分布, (d)密度梯度${\kappa _{\text{N}}}$, 以及(e)磁场梯度${\kappa _{\text{B}}}$
Fig. 5. The axial distribution of (a) ion density profile, (b) space potential, (c) electric field, and (d) the density gradient ${\kappa _{\text{N}}}$, (e) the magnetic field gradient ${\kappa _{\text{B}}}$, for ${\alpha _1} = 1.1$, 1.3, 1.5, 1.7, respectively.
图 6 由密度梯度和磁场梯度驱动的不稳定性的增长率(a), 频率(b), 以及相速度(c); (b), (c)中的阴影区域表示旋转辐条不稳定性典型的频率范围和相速度范围, 分别为5—25 kHz和1200—2800 m/s
Fig. 6. The instability growth rate (a), frequency (b), and phase velocity (c) induced by density and magnetic gradient. The shaded area in (b), (c), are the typical spoke frequency and phase velocity, range from 5–25 kHz and 1200–2800 m/s, respectively.
-
[1] Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010
Google Scholar
[2] McDonald M S, Gallimore A D 2011 IEEE Trans. Plasma Sci. 39 2952
Google Scholar
[3] Lobbia R B, Gallimore A D 2007 30th International Electric Propulsion Conference Florence, Italy, September 17−20, 2007 IEPC-2007-177
[4] Martinez R, Hoskins A, Peterson P, Massey D 2009 31st International Electric Propulsion Conference Michigan, USA, September 20−24, 2009 IEPC-2009-120
[5] Hoffer R R 2004 Ph. D. Dissertation (University of Michigan
[6] Liang R, Gallimore A 2011 49th AIAA Aerospace Sciences Meeting Orlando, Florida, USA, Janurary 4−7, 2011 AIAA-2011-1016
[7] McDonald M S, Bellant C K, St. Pierre B A, Gallimore A D 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego California, USA, July 31−August 03, 2011 AIAA-2011-5810
[8] Barral S, Makowski K, Peradzynski Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137
Google Scholar
[9] Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 235001
Google Scholar
[10] Boeuf J P, Takahashi M 2020 Phys. Rev. Lett. 18 185005
[11] Boeuf J P, Takahashi M 2020 Phys. Plasmas 27 083520
Google Scholar
[12] Escobar D, Ahedo E 2014 Phys. Plasmas 21 043505
Google Scholar
[13] Escobar D, Ahedo E 2015 Phys. Plasmas 22 102114
Google Scholar
[14] Sekerak M J, Longmier B W, Gallimore A D 2013 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference San Jose, CA, July 14−17, 2013 AIAA-2013-4116
[15] Parker J B, Raitses Y, Fisch N J 2010 Appl. Phys. Lett. 97 091501
Google Scholar
[16] Janes G S, Lowder R S 1966 Phys. Fluids 9 1115
Google Scholar
[17] Sekerak M J, Longmier B W, Gallimore A D, Brown D L, Hofer R R, Polk J E 2015 IEEE Trans. Plasma Sci. 43 72
Google Scholar
[18] Ellison C L, Raitses Y, Fisch N J 2012 Phys. Plasmas 19 013503
Google Scholar
[19] Escobar D, Ahedo E 2014 50th International Electric Propulsion Conference IEPC-2014-3512
[20] Boeuf J P, Smolyakov A 2023 Phys. Plasmas 30 050901
Google Scholar
[21] Lomas P J, Kilkenny J D 1977 Phys. Plasmas 19 329
Google Scholar
[22] Chesta E, Lam C M, Meezan N B, Schmidt D P, Cappelli M A 2001 IEEE Trans. Plasma Sci. 29 582
Google Scholar
[23] Panjan M, Loquai S, Klemberg-Sapieha J E, Martinu L 2015 Plasma Sources Sci. Technol. 24 065010
Google Scholar
[24] Sekerak M J 2014 PhD Dissertation (University of Michigan
[25] 杨三祥, 赵以德, 代鹏, 李建鹏, 耿海, 杨俊泰, 贾艳辉, 郭宁 2024 物理学报 73 245202
Google Scholar
Yang S X, Zhao Y D, Dai P, Li J P, Geng H, Yang J T, Jia Y H, Guo N 2024 Acta Phys. Sin. 73 245202
Google Scholar
[26] McDonald M S, Gallimore A D 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-242
[27] 杨三祥, 郭宁, 贾艳辉, 耿海, 高俊, 刘家涛, 刘士永, 杨盛林 2023 物理学报 72 085201
Google Scholar
Yang S X, Guo N, Jia Y H, Geng H, Gao J, Liu J T, Liu S Y, Yang S L 2023 Acta Phys. Sin. 72 085201
Google Scholar
[28] Boeuf J P, Takahashi M 2017 Phys. Plasmas 121 011101
[29] Sekerak M, Longmier B, Gallimore A D, Brown D, Hofer R, Polk J 2013 33rd International Electric Propulsion Conference Washington D. C. , USA October 7−10, 2013 IEPC-2013-143
[30] Escobar D, Ahedo E 2015 IEEE Trans. Plasma Sci. 43 149
Google Scholar
[31] Smolyakov A I, Chapurin O, Frias W, Kosakarov O, Romadanov I, Tang T, Umansky M, Raitses Y, Kaganovich I D, Lakhin V P 2017 Plasma Phys. Control. Fusion 59 014041
Google Scholar
[32] 杨三祥, 赵以德, 代鹏, 李建鹏, 谷增杰, 孟伟, 耿海, 郭宁, 贾艳辉, 杨俊泰, 2025 物理学报 74 025201
Google Scholar
Yang S X, Zhao Y D, Dai P, Li J P, Gu Z J, Meng W, Geng H, Guo N, Jia Y H, Yang J T 2025 Acta Phys. Sin. 74 025201
Google Scholar
[33] Choueiri E Y 2001 Phys. Plasmas 8 1411
Google Scholar
计量
- 文章访问数: 336
- PDF下载量: 5
- 被引次数: 0








下载: