搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合金元素对钯基合金热力学和弹性性能的影响规律研究以及数据库构建

朱晗毓 种晓宇 高兴誉 武海军 李祖来 冯晶 宋海峰

引用本文:
Citation:

合金元素对钯基合金热力学和弹性性能的影响规律研究以及数据库构建

朱晗毓, 种晓宇, 高兴誉, 武海军, 李祖来, 冯晶, 宋海峰

Influence of alloying elements on the thermodynamic and elastic properties of palladium based alloys and database construction

ZHU Hanyu, CHONG Xiaoyu, GAO Xingyu, WU Haijun, LI Zulai, FENG Jing, SONG Haifeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 钯(Pd)合金较低的摩擦系数和较好的力学性能使得其在用于长时间稳定工作的高精度仪器仪表中具备潜在优势, 但是因为高昂的原料和实验成本导致基础数据缺乏, 无法进行高性能Pd合金的设计. 因此, 本研究利用第一性原理计算了Pd的晶格常数和弹性模量, 并建立Pd与Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni等33种合金元素形成的稀固溶体模型, 计算了混合焓、弹性常数和弹性模量. 研究结果表明, 除Mn, Fe, Co, Ni, Ru, Rh, Os和Ir外, 其他合金元素都可以固溶到Pd中, 元素周期表两侧的合金元素能提高Pd固溶体的延展性, 其中La, Ag和Zn的作用最明显. 通过差分电荷密度分析, Ag掺杂后形成的电子云呈球形分布, 造成延展性提高, Hf掺杂后周围的离域程度最大, 表明Hf与Pd的键合存在较强的离子性, 导致Pd31Hf硬度较高. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00186中访问获取.
    The lower friction coefficient and superior mechanical properties of palladium (Pd) alloys make them potentially advantageous for use in high-precision instruments and devices that require long-term stable performance. However, the high cost of raw materials and experimental expenses result in a lack of fundamental data, which hinders the design of high-performance Pd alloys. Therefore, in this study, first-principles calculations are used to determine the lattice constant and elastic modulus of Pd. A model of dilute solid solutions formed by Pd with 33 alloying elements including Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and others, is established. The mixing enthalpy, elastic constant, and elastic modulus are calculated. The results show that, all other alloying elements except for Mn, Fe, Co, Ni, Ru, Rh, Os, and Ir can form solid solutions with Pd. Alloying elements from both sides of the periodic table enhance the ductility of Pd solid solutions, with La, Ag, and Zn having the most significant effects, while Cu and Hf reduce the ductility of Pd. Differential charge density analysis indicates that the electron cloud formed after doping with Ag is spherically distributed, thereby improving ductility. After doping with Hf, the degree of delocalization around the atoms is maximized, indicating a strong ionic bond between Hf and Pd, which results in a higher hardness of Pd31Hf. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00186.
  • 图 1  (a) Pd超胞模型; (b) Pd的能量-体积曲线; (c) Pd的弹性模量与实验值对比

    Fig. 1.  (a) Supercell models of Pd; (b) the energy-volume curves for Pd; (c) comparison of the elastic modulus of Pd with experimental values.

    图 2  Pd31X晶体结构示意图

    Fig. 2.  Crystal structure of Pd31X.

    图 3  Pd31X (X = Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Ce, Hf, Ta, W, Re, Os, Ir, Pt, Th)的能量-体积曲线

    Fig. 3.  Energy-volume curves for Pd31X (X = Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Ce, Hf, Ta, W, Re, Os, Ir, Pt, Th).

    图 4  原子弛豫(a)和完全弛豫(b)策略下Ir-X二元合金的混合焓的三点拟合

    Fig. 4.  Three-point fitting of the mixing enthalpy of Ir-X binary alloys under atomic relaxation (a) and complete relaxation (b) strategies.

    图 5  钯基稀固溶体合金的弹性特性 (a) 体模量; (b) 剪切模量; (c) 杨氏模量; (d) 泊松比

    Fig. 5.  Elastic properties of Pd-based dilute alloys: (a) Bulk modulus; (b) shear modulus; (c) Young’s modulus; (d) Poisson’s ratio.

    图 6  通过R-K多项式得到的Pd-X二元合金的弹性常数和弹性模量

    Fig. 6.  Elastic constants and elastic modulus of Pd-X binary alloys obtained through R-K polynomials.

    图 7  钯基稀固溶体合金在完全弛豫策略下的泊松比与B/G的关系

    Fig. 7.  Poisson’s ratio and B/G relationship of dilute Pd-based alloys under the complete relaxation strategy in terms of computational materials science.

    图 8  差分电荷密度 (a) (111)面; (b) (100)面

    Fig. 8.  Differential charge density: (a) (111) plane; (b) (100) plane.

    表 1  Pd稀固溶体原子及完全松弛豫略下的体积(V)、混合焓(ΔH)与零阶相互作用参数(0L)

    Table 1.  Volume (V), mixing enthalpy (ΔH), and zero-order interaction parameter (0L) for atomic and complete relaxation strategies of Pd dilute solid solution.

    $ {\text{P}}{{\text{d}}_{31}}X $ Atom relaxing strategy Full relaxing strategy Solid solubility
    V/(Å3·unit cell–1) ΔH/(J·mol–1) 0L V/(Å3·unit cell–1) ΔH/(J·mol–1) 0L
    Al 487.87 –8564.71 –282911.59 486.32 –8681.80 –286779.56 5%
    Si 487.87 –7619.23 –251680.33 484.34 –7644.04 –252499.95 6.00%
    Sc 487.87 –11153.07 –368411.25 491.01 –11418.30 –377172.35 10%
    Ti 487.87 –10113.64 –334076.21 487.22 –10255.70 –338768.78 6%
    V 487.87 –6175.68 –203996.75 485.01 –6249.44 –206433.24 10%
    Cr 487.87 –1968.7 –65030.61 485.57 –1897.47 –62677.72 12%
    Mn 487.87 1093.49 36120.32 483.34 962.92 31807.49 15%
    Fe 487.87 2205.78 72862.04 483.35 2006.79 66288.66 10%
    Co 487.87 1678.78 55453.81 483.60 1427.42 47151.00 3%
    Ni 487.87 524.51 17325.86 484.15 270.46 8933.84 完全互溶
    Cu 487.87 –766.65 –25324.15 485.30 –997.37 –32945.41 20%
    Zn 487.87 –4513.42 –149088.54 486.68 –4589.15 –151590.11 7%
    Ga 487.87 –6361.88 –210147.41 487.05 –6472.09 –213787.63
    Y 487.87 –10057.30 –332215.41 496.61 –10411.01 –343899.13 8%
    Zr 487.87 –11826.39 –390652.51 492.53 –12047.20 –397946.22 8%
    Nb 487.87 –9494.62 –313628.61 489.21 –9616.53 –317655.76 15%
    Mo 487.87 –5023.61 –165941.15 487.39 –5089.07 –168103.51 23%
    Tc 487.87 –973.48 –32156.31 486.18 –1072.43 –35424.78 25%—86%
    Ru 487.87 1059.92 35011.71 486.21 995.81 32893.73 4%
    Rh 487.87 814.70 26911.42 486.61 531.91 17570.24 8%
    Ag 487.87 –18.04 –595.92 490.16 –128.24 –4236.11 完全互溶
    Cd 487.87 –3068.11 –101346.48 492.11 –3208.36 –105979.25
    La 487.87 –8248.78 –272475.91 501.57 –8649.21 –285703.03
    Ce 487.87 –11290.17 –372939.69 497.96 –11613.00 –383603.62 17%
    Hf 487.87 –12565.04 –415051.67 491.86 –12765.53 –421674.24 12%
    Ta 487.87 –10076.76 –332858.26 489.28 –10186.26 –336475.27 4%
    W 487.87 –5839.20 –192881.85 487.40 –5887.76 –194485.85 28%
    Re 487.87 –1398.74 –46203.54 487.82 –1356.74 –44816.19 18%
    Os 487.87 1196.45 39521.60 486.10 1091.13 36042.65 9%
    Ir 487.87 1114.98 36830.25 486.88 910.96 30091.00 3%
    Pt 487.87 –229.64 –7585.51 488.04 –509.93 –16844.30 完全互溶
    Au 487.87 –458.08 –15131.47 490.65 –733.56 –24231.25 完全互溶
    Th 487.87 –12313.59 –406745.80 501.50 –12676.97 –418748.79
    下载: 导出CSV

    表 2  完全驰豫下的钯基稀固溶体合金的计算弹性性能(GPa), 包括弹性常数$ {C_{ij}} $、体模量、剪切模量、杨氏模量、B/G和泊松比

    Table 2.  Calculated elastic properties (GPa) of Pd-based dilute alloys in full relaxing strategy, including Elastic constants $ {C_{ij}} $, bulk modulus, shear modulus, Young’s modulus, B/G and Poisson’s ratio.

    $ {\text{P}}{{\text{d}}_{31}}X $C11C12C44
    G

    B

    E
    B/Gυ
    Al20715165471701283.6430.374
    Si19716061381721064.5480.398
    Sc20814768491671353.3830.365
    Ti21215171511711383.3810.365
    V21215373501731383.4320.367
    Cr21115374511721393.3750.365
    Mn21315570491741353.5440.371
    Fe21215466471731303.6550.375
    Co21215264471721293.6590.375
    Ni21115163471711293.6540.375
    Cu20715166471691293.6110.373
    Zn20315264441691223.8140.379
    Ga20515263451691233.7910.379
    Y20214566471641293.4710.369
    Zr21015070501701363.4180.367
    Nb21115374511721393.3750.365
    Mo21215576511741403.3930.366
    Tc21515875511771403.4630.368
    Ru21315569491741343.5500.371
    Rh21315364471731303.6740.375
    Ag20015164431681203.8590.381
    Cd19915064441671203.8200.380
    La19314361421601163.7840.379
    Ce19914764441651223.7200.377
    Hf21015070501701373.4050.366
    Ta21315474511741403.4030.366
    W21215677511751403.4090.366
    Re21315575501741403.4020.366
    Os21415774511761383.4860.369
    Ir21315667481751313.6840.376
    Pt21415363471741293.6890.376
    Au20715165461701273.6660.375
    Th19814864441651213.7420.377
    下载: 导出CSV
  • [1]

    Gao S L, Fan S S, Yuan C, Cao J W 2023 Aero Weapon. 30 11 [高书亮, 樊思思, 袁成, 曹军伟 2023 航空兵器 30 11]

    Gao S L, Fan S S, Yuan C, Cao J W 2023 Aero Weapon. 30 11

    [2]

    Xu X, Lv J X, Wang Y, Li M, Wang Z, Wang H 2025 Mater. Genome Eng. Adv. 3 e69Google Scholar

    [3]

    焦磊 2018 硕士学位论文 (北京: 北京工业大学)

    Jiao L 2018 M. S. Thesis ( Beijing: Beijing University of Technology

    [4]

    马晓东 余建军 赵涛 2016 山东工业技术 19 2

    Ma X D, Yu J J, Zhao T 2016 Shandong Ind. Technol. 19 2

    [5]

    宿彦京, 付华栋, 白洋, 姜雪, 谢建新 2020 金属学报 56 1313

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta Metall. Sin. 56 1313

    [6]

    Wang Z R, Qin M Y, Zhang P, Xu Y G, Que S T, Yan F, Xiang X D 2025 Mater. Genome Eng. Adv. 3 e70010Google Scholar

    [7]

    汪洪, 向勇, 项晓东, 陈立泉 2015 科技导报 33 13

    Wang H, Xiang Y, Xiang X D, Chen L Q 2015 Sci. Technol. Rev. 33 13

    [8]

    Guo Z K, Li R, He X F, Guo J, Ju S H 2024 Mater. Genome Eng. Adv. 2 e73Google Scholar

    [9]

    Meng H Y, Huang J, Zhao T H, Zhang X Y, Tong Y, Qu J L, Li W D, Jiang L, Meng F C, Chen S Y 2025 Mater. Genome Eng. Adv. 9 e70002

    [10]

    Wang W Y, Tang B, Shang S L, Wang J, Li S, Wang Y, Zhu J, Wei S, Wang J, Darling K A, Mathaudhu S N, Wang Y, Ren Y, Hui X D, Kecskes L J, Li J, Liu Z K 2019 Acta Mater. 170 231Google Scholar

    [11]

    Xia Y X, He J G, Chen N F, Chen J K 2024 Rare Metals 43 3460Google Scholar

    [12]

    Chong X Y, Paz Soldan Palma J, Wang Y, Shang S L, Drymiotis F, Ravi V A, Star K E, Fleurial J P, Liu Z K 2021 Acta Mater. 217 117169Google Scholar

    [13]

    Hu Y C, Tian J 2023 J. Mater. Informat. 3 1

    [14]

    Wang W Y, Gan B, Lin D, Wang J, Wang Y, Tang B, Kou H C, Shang S L, Wang Y, Gao X Y, Song H F, Hui X D, Kecskes L J, Xia Z H, Dahmen K A, Liaw P K, Li J S, Liu Z K 2020 J. Mater. Sci. Technol. 53 192Google Scholar

    [15]

    Zou C, Li J, Wang W Y, Zhang Y, Lin D, Yuan R, Wang X, Tang B, Wang J, Gao X Y, Kou H, Hui X D, Zeng X Q, Ma Q, Song H F, Liu Z K, Xu D S 2021 Acta Mater. 202 211Google Scholar

    [16]

    Liao M Q, Liu Y, Min L, Lai Z H, Han T Y, Yang D, Zhu J C 2018 Harbin Inst. Technol. 101 152

    [17]

    Birch F 1947 Phys. Rev. 71 809Google Scholar

    [18]

    Shang S L, Wang Y, Kim D, Liu Z K 2010 Comput. Mater. Sci. 47 1040Google Scholar

    [19]

    周云轩 2021 博士学位论文 (昆明: 昆明理工大学)

    Zhou Y X 2021 Ph. D. Dissertation ( Kunming: Kunming University of Science and Technology

    [20]

    Chong X Y, Wei Y, Liang Y X, Shang S L, Li C, Zhang A M, Wei Y, Gao X Y, Wang Y, Feng J, Chen L, Song H F, Liu Z K 2023 J. Mater. Inf. 3 21

    [21]

    Teter D M, Gibbs G V, Boisen M B Jr, Allan D C, Teter M P 1995 Phys. Rev. B 52 8064Google Scholar

    [22]

    Huang Z H, Liu G T, Zhang B F, Yan M F, Fu Y D 2020 Phys. Lett. A 384 33

    [23]

    Su Y, Liang C X, Wang D 2023 J. Mater. Inf. 3 14

    [24]

    Duan Y H, Sun Y, Peng M J, Zhou S G 2014 J. Alloys Compd. 595 14Google Scholar

    [25]

    Tang B Y, Chen P, Li D L, Yi J X, Wen L, Peng L M, Ding W J 2010 J. Alloys Compd. 492 416Google Scholar

    [26]

    Wang Y, Liao M Q, Bocklund B J, Gao P, Shang S L, Kim H J, Beese A M, Chen L Q, Liu Z K 2021 Calphad 75 102355Google Scholar

    [27]

    Liu Y, Lu Y H, Wang W, Li J, Zhang Y, Yin J, Pan X Q, Chen Y, Li J S, Song H F 2023 J. Mater. Inf. 3 17

    [28]

    Chen R T, Li E, Zou Y 2024 J. Mater. Inf. 4 26

    [29]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [30]

    Vega L, Vines F 2020 J. Comput. Chem. 41 2598Google Scholar

    [31]

    Brańka A C, Wojciechowski K W 2008 J. Non-Cryst. Solids 354 35

    [32]

    Ji H, Yin J, Wei G, Lai W S, Liu B X, Liu J B 2023 Rare Metals 42 1663Google Scholar

    [33]

    Li R Y, Duan Y H 2016 Philos. Mag. 96 972Google Scholar

    [34]

    Ozisik H B, Deligoz E, Ozisik H, Ateser E 2020 Mater. Res. Express 7 025004Google Scholar

    [35]

    Kenneth Barbalace https://EnvironmentalChemistry.com/yogi/periodic/Pd.html [10/12/2025]

    [36]

    Samsonov G V 1968 Handbook of the Physicochemical Properties of the Elements (New York: Springer New

    [37]

    彭红建, 谢佑卿, 陶辉锦 2006 中国有色金属学报 16 100

    Peng H J, Xie Y Q, Tao H J 2006 Trans. Nonferrous Met. Soc. China 16 100

    [38]

    段亚娟, 乔吉超 2022 物理学报 71 086101Google Scholar

    Duan Y J, Qiao J C 2022 Acta Phys. Sin. 71 086101Google Scholar

    [39]

    Zhang X Z, Wang D T, Nagaumi H, Wang R, Wu Z B, Zhang M H, Gao D S, Chen H, Wang P F, Zhou P F, Zhou Y X, Wang Z X, Li T L 2025 Mater. Genome Eng. Adv. 3 e70008Google Scholar

    [40]

    Born M 1939 J. Chem. Phys. 7 591Google Scholar

    [41]

    Wang G C, Jiang Y H, Li Z L, Chong X Y, Feng J 2021 Ceram. Int. 47 4758Google Scholar

    [42]

    Xu X W, Fu K, Li L L, Lu Z M, Zhang X H, Fan Y, Lin J, Liu G D, Luo H Z, Tang C C 2013 Physica B 419 105Google Scholar

    [43]

    Tan F Q, Bai Q G, Yu B, Wang J F, Zhang Z H 2024 Rare Metals 13 5305

    [44]

    Zhuang Y, Chen J C, Yan Z, Lv L U 2015 Mater. Rev. 29 150

    [45]

    Ma W, Huang H, Ding W, Guo S, Liu H X, Cheng X N 2023 Rare Metals 42 1670Google Scholar

  • [1] 刘郅澄, 周杰, 陈凡, 彭彪, 彭文屹, 章爱生, 邓晓华, 罗显芝, 刘日新, 刘德武, 黄雨, 阎军. Si对Inconel 718合金中γ相影响的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230583
    [2] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230132
    [3] 张博凯. 胶体聚合物弹性模量的微观理论: 键长的效应. 物理学报, doi: 10.7498/aps.70.20210128
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190664
    [5] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, doi: 10.7498/aps.66.130501
    [6] 张朝民, 江勇, 尹登峰, 陶辉锦, 孙顺平, 姚建刚. 点缺陷浓度对非化学计量比L12型结构的A13Sc弹性性能的影响. 物理学报, doi: 10.7498/aps.65.076101
    [7] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, doi: 10.7498/aps.63.233103
    [8] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.116201
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, doi: 10.7498/aps.62.087104
    [10] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.038210
    [11] 张正罡, 他得安. 基于弹性模量检测骨疲劳的超声导波方法研究. 物理学报, doi: 10.7498/aps.61.134304
    [12] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, doi: 10.7498/aps.61.064211
    [13] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047110
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, doi: 10.7498/aps.60.107504
    [15] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, doi: 10.7498/aps.60.076201
    [16] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, doi: 10.7498/aps.59.8037
    [17] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.6882
    [18] 王娜, 唐壁玉. L12型铝合金的结构、弹性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.230
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, doi: 10.7498/aps.57.7204
    [20] 宇 霄, 罗晓光, 陈贵锋, 沈 俊, 李养贤. 第一性原理计算XHfO3(X=Ba, Sr)的结构、弹性和电子特性. 物理学报, doi: 10.7498/aps.56.5366
计量
  • 文章访问数:  277
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-06
  • 修回日期:  2025-10-19
  • 上网日期:  2025-11-05

/

返回文章
返回