搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

布里渊光散射光谱及其应用

王悦齐 郭梦莹 王棋

引用本文:
Citation:

布里渊光散射光谱及其应用

王悦齐, 郭梦莹, 王棋

Brillouin Light Scattering Spectroscopy and Its Applications

WANG Yueqi, GUO Mengying, WANG Qi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文综述了布里渊光散射(Brillouin Light Scattering,BLS)技术的基本原理、发展历程及实验装置演化,并深入探讨了其在现代科学研究中的多领域应用。BLS技术基于光子与材料中元激发(如磁子、声子)的非弹性散射过程,通过精确测量散射光的频移,可获取这些准粒子的能量、动量及相互作用等关键物理信息。自1914年布里渊首次提出理论预测以来,BLS技术经历了显著的技术演进:从早期仅能实现单一波矢的选择性测量,逐步发展为兼具微米级空间分辨率、纳秒时间分辨率和相位测量能力的高精度表征手段。这一技术演化过程不仅拓展了布里渊光散射在凝聚态物理研究中的应用范围,更使其成为研究磁子动力学和声子输运现象的重要工具。本文详细阐述了串联法布里-珀罗干涉仪的工作原理及其在BLS高精度光谱分析中的核心作用,并结合近年来一系列前沿研究案例,系统展示了BLS技术在自旋波色散关系测量、非互易传播特性研究、非线性动力学表征、磁声耦合效应以及生物力学分析等领域的独特优势。随着BLS技术的持续优化及其与新兴表征方法的交叉融合,布里渊光散射作为一种多维度、高灵敏度的光学无损探测平台,将在材料科学、量子信息、生物医学等前沿领域发挥更加关键的作用。
    Brillouin Light Scattering (BLS) spectroscopy has emerged as a cornerstone technique for investigating elementary excitations in condensed matter systems, offering unique capabilities for non invasive characterization of magnon and phonon dynamics. This review examines the fundamental principles, technological evolution, and diverse applications of BLS across multiple research domains.
    BLS operates through inelastic scattering between photons and quasiparticles (magnons, phonons), enabling precise measurement of excitation frequencies, propagation characteristics, and interaction mechanisms via detection of characteristic frequency shifts. Since Brillouin’s 1914 theoretical prediction and Gross’s 1930 experimental verification, the technique has evolved dramatically. The revolutionary development of tandem Fabry-Pérot interferometers by Sandercock in the 1970s established the foundation for modern high-resolution BLS systems, achieving contrast ratios exceeding 1010 and frequency resolution in the MHz range.
    We detail four advanced BLS configurations: 1) Conventional wave-vector-resolved systems enabling precise dispersion relation measurements and detection of non-reciprocal spin wave propagation induced by Dzyaloshinskii-Moriya interactions; 2) Micro-focused BLS (μBLS) achieving sub-micrometer spatial resolution for nanoscale magnetic structure characterization; 3) Time-resolved BLS (TR-BLS) providing nanosecond temporal resolution for studying ultrafast dynamics, magnon Bose-Einstein condensation, and nonlinear phenomena; 4) Phase-resolved BLS (PR-BLS) enabling direct wave vector and phase measurements through electro-optical modulation.
    Beyond traditional magnonic applications, BLS demonstrates remarkable versatility in phonon research and magnetoacoustic coupling studies. The technique’s polarization-sensitive detection allows simultaneous investigation of magnon-phonon hybrid states and energy transfer mechanisms. Importantly, BLS has successfully expanded into biomedical applications, providing non-contact characterization of cellular and tissue viscoelastic properties at GHz frequencies, revealing disease-related biomechanical changes.
    As BLS technology continues advancing through improved instrumentation and novel methodologies, it serves as an indispensable platform spanning quantum materials research, magnonic device development, and cellular mechanobiology, positioning itself at the forefront of interdisciplinary science bridging condensed matter physics, materials engineering, and biomedical research.
  • [1]

    Brillouin L 1914 C. R. Hebd. Acad. Sci. 158 1331

    [2]

    Brillouin L 1922 Ann. Phys. 9 88

    [3]

    Mandelstam L I 1926 Zh. Russ. Fiz.-Khim. O-va. 58 146

    [4]

    Gross E 1930 Nature 126 201

    [5]

    Maiman T H 1960 Nature 187 493

    [6]

    Fleury P, Porto S, Cheesman L, Guggenheim H 1966 Phys. Rev. Lett. 17 84

    [7]

    Sandercock J R 1970 Opt. Commun. 2 73

    [8]

    Sandercock J R 1972 Phys. Rev. Lett. 28 237

    [9]

    Lindsay S, Anderson M, Sandercock J R 1981 Rev. Sci. Instrum. 52 1478

    [10]

    Madami M, Gubbiotti G, Tacchi S, Carlotti G 2012 Solid State Phys. 63 79

    [11]

    Sebastian T, Schultheiss K, Obry B, Hillebrands B, Schultheiss H 2015 Front. Phys. 3 35

    [12]

    Schultheiss H, Schäfer S, Candeloro P, Leven B, Hillebrands B, Slavin A N 2008 Phys. Rev. Lett. 100 047204

    [13]

    Büttner O, Bauer M, Rueff A, Demokritov S O, Hillebrands B, Slavin A N, Kostylev M, Kalinikos B 2000 Ultrasonics 38 443

    [14]

    Büttner O, Bauer M, Demokritov S O, Hillebrands B, Kivshar Y S, Grimalsky V, Rapoport Y, Slavin A N 2000 Phys. Rev. B 61 11576

    [15]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441

    [16]

    Gusev V E, Ruello P 2018 Appl. Phys. Rev. 5 031101

    [17]

    Bauer M, Büttner O, Demokritov S O, Hillebrands B, Grimalsky V, Rapoport Y, Slavin A N 1998 Phys. Rev. Lett. 81 3769

    [18]

    Nembach H T, Shaw J M, Weiler M, Jué E, Silva T J 2015 Nat. Phys. 11 825

    [19]

    Fohr F, Serga A A, Schneider T, Hamrle J, Hillebrands B 2009 Rev. Sci. Instrum. 80

    [20]

    Yang J, Guo M Y, Li Z L, Wu P, Cai K M, Liu X Z, Peng Y G, Wang Q, Zhu X F 2025 Phys. Rev. Appl. 23 L051001

    [21]

    Scarcelli G, Yun S H 2008 Nat. Photonics 2 39

    [22]

    Cheng G 2008 Raman and Brillouin Scattering (Beijing:Science Press), p 461. (in Chinese)[程光煦 2008 拉曼布里渊散射 (北京: 科学出版社) 第 461 页]

    [23]

    Jacquinot P 1960 Rep. Prog. Phys. 23 267

    [24]

    Hillebrands B 2000 Light Scattering in Solids VⅡ: Crystal-Field and Magnetic Excitations, vol. 75 (Berlin: Springer), p 174

    [25]

    Mock R, Hillebrands B, Sandercock J R 1987 J. Phys. E: Sci. Instrum. 20 656

    [26]

    Sandercock J R 1982 Light Scattering in Solids Ⅲ: Recent Results, vol. 51 (Berlin: Springer), pp 173–206

    [27]

    Wang Q 2019 Ph.D. Dissertation (Kaiserslautern: Technische Universität Kaiserslautern)

    [28]

    Bozhko D A, Musiienko-Shmarova H Y, Tiberkevich V S, Slavin A N, Syvorotka I I, Hillebrands B, Serga A A 2020 Phys. Rev. Res. 2 023324

    [29]

    Serga A A, Sandweg C, Vasyuchka V, Jungfleisch M, Hillebrands B, Kreisel A, Kopietz P, Kostylev M 2012 Phys. Rev. B 86 134403

    [30]

    Böttcher T, Lee K, Heussner F, Jaiswal S, Jakob G, Kläui M, Hillebrands B, Brächer T, Pirro P 2020 ArXiv:2006.02690v1[cond-mat.mtrl-sci]

    [31]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [32]

    Cho J, Kim N H, Lee S, Kim J S, Lavrijsen R, Solignac A, Yin Y, Han D S, van Hoof N J J, Swagten H J M, Koopmans B, You C Y 2015 Nat. Commun. 6 7635

    [33]

    Song W, Wang X, Wang W, Jiang C, Wang X, Chai G 2020 Phys. Status Solidi RRL 14 2000118

    [34]

    Damon R W, Eshbach J R 1961 J. Phys. Chem. Solids 19 308

    [35]

    Sandercock J R, Wettling W 1979 J. Appl. Phys. 50 7784

    [36]

    Grünberg P, Cottam M, Vach W, Mayr C, Camley R 1982 J. Appl. Phys. 53 2078

    [37]

    Wang Q, Csaba G, Verba R, Chumak A V, Pirro P 2024 Phys. Rev. Appl. 21 040503

    [38]

    Chumak A V, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye A O, Akerman J, Aliev F G, Anane A, Awad A, Back C H, Barman A, Bauer G E W, Becherer M, Beginin E N, Bittencourt V A S V, Blanter Y M, Bortolotti P, Boventer I, Bozhko D A, Bunyaev S A, Carmiggelt J J, Cheenikundil R R, Ciubotaru F, Cotofana S, Csaba G, Dobrovolskiy O V, Dubs C, Elyasi M, Fripp K G, Fulara H, Golovchanskiy I A, Gonzalez-Ballestero C, Graczyk P, Grundler D, Gruszecki P, Gubbiotti G, Guslienko K, Haldar A, Hamdioui S, Hertel R, Hillebrands B, Hioki T, Houshang A, Hu C M, Huebl H, Huth M, Iacocca E, Jungfleisch M B, Kakazei G N, Khitun A, Khymyn R, Kikkawa T, Klaui M, Klein O, Klos J W, Knauer S, Koraltan S, Kostylev M, Krawczyk M, Krivorotov I N, Kruglyak V V, Lachance-Quirion D, Ladak S, Lebrun R, Li Y, Lindner M, Macedo R, Mayr S, Melkov G A, Mieszczak S, Nakamura Y, Nembach H T, Nikitin A A, Nikitov S A, Novosad V, Otalora J A, Otani Y, Papp A, Pigeau B, Pirro P, Porod W, Porrati F, Qin H, Rana B, Reimann T, Riente F, RomeroIsart O, Ross A, Sadovnikov A V, Safin A R, Saitoh E, Schmidt G, Schultheiss H, Schultheiss K, Serga A A, Sharma S, Shaw J M, Suess D, Surzhenko O, Szulc K, Taniguchi T, Urbanek M, Usami K, Ustinov A B, van der Sar T, van Dijken S, Vasyuchka V I, Verba R, Kusminskiy S V, Wang Q, Weides M, Weiler M, Wintz S, Wolski S P, Zhang X 2022 IEEE Trans. Magn. 58 1

    [39]

    Jersch J, Demidov V E, Fuchs H, Rott K, Krzysteczko P, Münchenberger J, Reiss G, Demokritov S O 2010 Appl. Phys. Lett. 97 152502

    [40]

    Yoshihara A 2023 Materials 16 1038

    [41]

    Heinz B, Braecher T, Schneider M, Wang Q, Laegel B, Friedel A M, Breitbach D, Steinert S, Meyer T, Kewenig M, Dubs C, Pirro P, Chumak A V 2020 Nano Lett. 20 4220

    [42]

    Pirro P, Brächer T, Vogt K, Obry B, Schultheiss H, Leven B, Hillebrands B 2011 Phys. Status Solidi B 248 2404

    [43]

    Vogt K, Fradin F Y, Pearson J E, Sebastian T, Bader S D, Hillebrands B, Hoffmann A, Schultheiss H 2014 Nat. Commun. 5 3727

    [44]

    Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lägel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana O V Sorin Dan an Dobrovolskiy, Braecher T, Pirro P, Chumak A V 2020 Nat. Electron. 3 765

    [45]

    Schneider M, Braecher T, Breitbach D, Lauer V, Pirro P, Bozhko D A, Musiienko-Shmarova H Y, Heinz B, Wang Q, Meyer T, Heussner F, Keller S, Papaioannou E T, Laegel B, Loeber T, Dubs C, Slavin A N, Tiberkevich V S, Serga A A, Hillebrands B, Chumak A V 2020 Nat. Nanotechnol. 15 457

    [46]

    Frey P, Bozhko D A, L’vov V S, Hillebrands B, Serga A A 2021 Phys. Rev. B 104 014420

    [47]

    Wang Q, Verba R, Davídková K, Heinz B, Tian S, Rao Y, Guo M, Guo X, Dubs C, Pirro P, Chumak A V 2024 Nat. Commun. 15 7577

    [48]

    Serga A A, Demokritov S O, Hillebrands B, Slavin A N 2004 Phys. Rev. Lett. 92 117203

    [49]

    Wang Y, Guo M, Davídková K, Verba R, Guo X, Dubs C, Chumak A V, Pirro P, Wang Q 2025 Phys. Rev. Appl. 23 014066

    [50]

    Wang Q, Verba R, Heinz B, Schneider M, Wojewoda O, Davídková K, Levchenko K, Dubs C, Mauser N J, Urbánek M, Pirro P, Chumak A V 2023 Sci. Adv. 9 eadg4609

    [51]

    Merbouche H, Divinskiy B, Gouéré D, Lebrun R, El Kanj A, Cros V, Bortolotti P, Anane A, Demokritov S O, Demidov V E 2024 Nat. Commun. 15 1560

    [52]

    Mathieu C, Synogatch V T, Patton C E 2003 Phys. Rev. B 67 104402

    [53]

    Schultheiss H, Vogt K, Hillebrands B 2012 Phys. Rev. B 86 054414

    [54]

    Körber L, Schultheiss K, Hula T, Verba R, Faßbender J, Kákay A, Schultheiss H 2020 Phys. Rev. Lett. 125 207203

    [55]

    Merbouche H, Divinskiy B, Nikolaev K O, Kaspar C, Pernice W H P, Gouéré D, Lebrun R, Cros V, Ben Youssef J, Bortolotti P, Anane A, Demokritov S O, Demidov V E 2022 Sci. Rep. 12 7246

    [56]

    Wojewoda O 2020 M.S. Dissertation (Brno: Brno University of Technology)

    [57]

    Wojewoda O 2024 Ph.D. Dissertation (Brno: Brno University of Technology)

    [58]

    Serga A A, Schneider T, Hillebrands B, Demokritov S O, Kostylev M P 2006 Appl. Phys. Lett. 89 063506

    [59]

    Vogt K, Schultheiss H, Hermsdoerfer S, Pirro P, Serga A A, Hillebrands B 2009 Appl. Phys. Lett. 95 182505

    [60]

    Schneider T, Serga A A, Neumann T, Hillebrands B, Kostylev M 2008 Phys. Rev. B 77 214411

    [61]

    Demidov V E, Urazhdin S, Demokritov S O 2009 Appl. Phys. Lett. 95 262509

    [62]

    Bozhko D A, Vasyuchka V I, Chumak A V, Serga A A 2020 Low Temp. Phys. 46 383

    [63]

    Bottani C E, Fioretto D 2018 Adv. Phys. X 3 1467281

    [64]

    Palombo F, Fioretto D 2019 Chem. Rev. 119 7833

    [65]

    Antonacci G, Beck T, Bilenca A, Czarske J, Elsayad K, Guck J, Kim K, Krug B, Palombo F, Prevedel R, Scarcelli G 2020 Biophys. Rev. 12 615

    [66]

    Landau L, Lifshitz E, Sykes J, Reid W, Dill E H 1960 Phys. Today 13 44

    [67]

    Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G 2019 Nat. Methods 16 969

    [68]

    Koski K J, Akhenblit P, McKiernan K, Yarger J L 2013 Nat. Mater. 12 262

    [69]

    Dutcher J R 1989 Ph.D. Dissertation (Burnaby: Simon Fraser University)

    [70]

    Geilen M, Nicoloiu A, Narducci D, Mohseni M, Bechberger M, Ender M, Ciubotaru F, Hillebrands B, Müller A, Adelmann C, Pirro P 2022 Appl. Phys. Lett. 120 242404

    [71]

    An K, Olsson K S, Weathers A, Sullivan S, Chen X, Li X, Marshall L G, Ma X, Klimovich N, Zhou J, Shi L, Li X 2016 Phys. Rev. Lett. 117 107202

    [72]

    Kunz Y, Küß M, Schneider M, Geilen M, Pirro P, Albrecht M, Weiler M 2024 Appl. Phys. Lett. 124 152403

    [73]

    Serga A A, Tiberkevich V S, Sandweg C W, Vasyuchka V I, Bozhko D A, Chumak A V, Neumann T, Obry B, Melkov G A, Slavin A N, Hillebrands B 2014 Nat. Commun. 5 3452

    [74]

    Bozhko D A, Clausen P, Chumak A V, Kobljanskyj Y V, Hillebrands B, Serga A A 2015 Low Temp. Phys. 41 801

    [75]

    Scarcelli G, Polacheck W J, Nia H T, Patel K, Grodzinsky A J, Kamm R D, Yun S H 2015 Nat. Methods 12 1132

    [76]

    Antonacci G, Braakman S 2016 Sci. Rep. 6 37217

    [77]

    Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015

    [78]

    Mattana S, Mattarelli M, Urbanelli L, Sagini K, Emiliani C, Serra M D, Fioretto D, Caponi S 2018 Light Sci. Appl. 7 17139

    [79]

    Vaughan J, Randall J 1980 Nature 284 489

    [80]

    Scarcelli G, Yun S H 2012 Opt. Express 20 9197

    [81]

    Akilbekova D, Ogay V, Yakupov T, Sarsenova M, Umbayev B, Nurakhmetov A, Tazhin K, Yakovlev V V, Utegulov Z N 2018 J. Biomed. Opt. 23 097004

    [82]

    Cardinali M A, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D 2022 J. R. Soc. Interface 19 20210642

    [83]

    Palombo F, Masia F, Mattana S, Tamagnini F, Borri P, Langbein W, Fioretto D 2018 Analyst 143 6095

    [84]

    Conrad C, Gray K M, Stroka K M, Rizvi I, Scarcelli G 2019 Cell. Mol. Bioeng. 12 215

    [85]

    Zhang J, Fiore A, Yun S H, Kim H, Scarcelli G 2016 Sci. Rep. 6 35398

  • [1] 刘想, 王希光, 李志雄, 郭光华. 铁磁畴壁中自旋极化电流诱导的左旋极化自旋波. 物理学报, doi: 10.7498/aps.73.20240651
    [2] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, doi: 10.7498/aps.73.20240983
    [3] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件. 物理学报, doi: 10.7498/aps.73.20240462
    [4] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, doi: 10.7498/aps.70.20210507
    [5] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, doi: 10.7498/aps.68.20191463
    [6] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, doi: 10.7498/aps.67.20180947
    [7] 黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成. 双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响. 物理学报, doi: 10.7498/aps.67.20171413
    [8] 吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红. 椭圆纳米盘中磁涡旋结构的方位角自旋波模式. 物理学报, doi: 10.7498/aps.64.217501
    [9] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, doi: 10.7498/aps.62.134206
    [10] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响. 物理学报, doi: 10.7498/aps.60.056805
    [11] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, doi: 10.7498/aps.59.4961
    [12] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, doi: 10.7498/aps.58.6108
    [13] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, doi: 10.7498/aps.58.8522
    [14] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, doi: 10.7498/aps.56.1415
    [15] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, doi: 10.7498/aps.56.6358
    [16] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, doi: 10.7498/aps.55.1769
    [17] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, doi: 10.7498/aps.55.3007
    [18] 成 泽. 压电晶体拉曼散射的统一量子论. 物理学报, doi: 10.7498/aps.54.5435
    [19] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, doi: 10.7498/aps.54.5262
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  51
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回