搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ruddlesden-Popper相层状镍基超导配对机理及相关物性的弱耦合理论研究

张铭 刘玉波 邵芷嫣 杨帆

引用本文:
Citation:

Ruddlesden-Popper相层状镍基超导配对机理及相关物性的弱耦合理论研究

张铭, 刘玉波, 邵芷嫣, 杨帆

Weak Coupling Studies on Pairing Mechanism and Relative Properties of Ruddlesden-Popper Phase Nickelate Superconductors*

ZHANG Ming, LIU Yu-Bo, SHAO Zhi-Yan, YANG Fan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 压力下双层镍氧超导体展现出高达80 K的超导临界温度,使Ruddlesden-Popper(RP)相层状镍氧化物成为研究非常规高温超导机制的新平台。本综述从弱耦合理论计算角度出发,系统回顾了近期在RP相层状镍酸盐中非常规超导配对机制的理论研究进展,内容涵盖配对对称性、主导轨道成分及其自旋涨落特征等方面,涉及加压条件下的La3Ni2O7、La4Ni3O10、La5Ni3O11块材以及常压条件下的La3Ni2O7薄膜等多个体系。这些材料普遍表现出以Ni-3dz2与3dx2-y2轨道为主导的低能电子自由度。在RP块材中,无规相近似、泛函重整化群和涨落交换近似等弱耦合方法普遍支持一种由自旋涨落介导、以层间dz2轨道为主导的s±波配对机制。其中,La3Ni2O7块材的超导可能与费米面上γ口袋的出现密切相关,该口袋源于dz2轨道成键态的金属化过程。另一方面,La4Ni3O10的超导特性主要取决于洪特耦合强度和掺杂浓度,而非能带细节;而La5Ni3O11则因层间约瑟夫森效应,呈现出穹顶型的压力-超导相图。对于La3Ni2O7薄膜,理论研究表明其可能存在s±波与dxy波竞争的配对特征。此外,常压下的自旋密度波序与超导存在紧密联系。整体而言,弱耦合理论不仅解释了实验现象,还为在常压下实现高温超导提供了理论思路。
    The discovery of superconductivity in Ruddlesden-Popper (RP) phase layered nickelates under high pressure has opened a new avenue for exploring unconventional pairing mechanisms beyond cuprates and iron-based superconductors. In particular, La3Ni2O7 exhibits a superconducting transition temperature (Tc) as high as 80 K at ~15 GPa, making it the second class of oxides that achieve liquid-nitrogentemperature superconductivity. Subsequent experiments have extended superconductivity to related compounds such as La4Ni3O10 and La5Ni3O11, as well as epitaxially grown thin films at ambient pressure. These findings have motivated extensive theoretical efforts to elucidate the microscopic pairing mechanism.
    This review summarizes recent progress from the perspective of weak-coupling theories, including random phase approximation (RPA), functional renormalization group (FRG), and fluctuation-exchange (FLEX) approaches. Density functional theory (DFT) calculations reveal that the low-energy degrees of freedom are dominated by Ni 3dz2 and 3dx2-y2> orbitals. In La3Ni2O7, pressure-induced metallization of the bonding 3dz2 band produces the γ pocket, enhancing spin fluctuations and stabilizing superconductivity. These fluctuations support superconductivity through interlayer 3dz2 pairing characterized by an s± gap. Hole doping or substitution may restore the γ pocket and enable bulk superconductivity at ambient pressure.
    For La4Ni3O10, theoretical calculations indicate predominantly s± pairing from interlayer 3dz2 orbitals, with weaker strength than La3Ni2O7, explaining its lower Tc and showing little sensitivity to band structure. In La5Ni3O11, composed of alternating single-layer and bilayer units, superconductivity mainly arises from the bilayer subsystem, again dominated by 3dz2 orbitals. Interestingly, the interplay between inter-bilayer Josephson coupling and the suppression of density of states leads to a dome-shaped Tc-pressure phase diagram, distinct from the monotonic behavior of La3Ni2O7.
    Epitaxial (La,Pr)3Ni2O7 thin films display superconductivity above 40 K at ambient pressure. Theory predicts doping-dependent pairing: s± symmetry is favored at low doping levels, while dxy pairing emerges at higher doping, in agreement with experimental indications of both nodeless and nodal gap behaviors.
    Beyond superconductivity, experiments have revealed spin-density-wave (SDW) order in bulk La3Ni2O7 and La4Ni3O10 at ambient pressure. Weak-coupling calculations confirm that these SDWs are driven by Fermi surface nesting and that their suppression under pressure gives rise to strong spin fluctuations which act as the glue for Cooper pairing. This highlights the intimate connection between the density-wave parent states and high-pressure superconductivity in nickelates.
    In summary, weak-coupling theories provide a unified framework for RP nickelates, highlighting the key role of 3dz2 orbitals, interlayer pairing, and spin fluctuations. They suggest that pressure, doping, substitution, and epitaxial strain can optimize superconductivity and potentially achieve high-Tc phases at ambient pressure. Key challenges remain in clarifying orbital competition, the SDW-superconductivity interplay, and strong-correlation effects, requiring close collaboration between advanced experiments and multi-orbital many-body theory.
  • [1]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [2]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20 1269

    [3]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y, Cheng J 2024 Nature 634 579

    [4]

    Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, et al. 2024 Nature 631 531

    [5]

    Zhang M, Pei C, Peng D, Du X, Hu W, Cao Y, Wang Q, Wu J, Li Y, Liu H, et al. 2025 Phys. Rev. X 15 021005

    [6]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X, Wen H H 2024 Chin. Phys. Lett. 41 017401

    [7]

    Huang X, Zhang H, Li J, Huo M, Chen J, Qiu Z, Ma P, Huang C, Sun H, Wang M 2024 Chin. Phys. Lett. 41 127403

    [8]

    Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, et al. 2025 arXiv:2502.01018

    [9]

    Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195

    [10]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, et al. 2024 Phys. Rev. Lett. 132 256503

    [12]

    Dan Z, Zhou Y, Huo M, Wang Y, Nie L, Wang M, Wu T, Chen X 2024 arXiv:2402.03952

    [13]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702

    [14]

    Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, et al. 2024 Nat. Commun. 15 9597

    [15]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2025 Nat. Commun. 16 6560

    [16]

    Zhang J, Phelan D, Botana A, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J, Osborn R, et al. 2020 Nat. Commun. 11 6003

    [17]

    Khasanov R, Hicken T J, Plokhikh I, Sazgari V, Keller L, Pomjakushin V, Bartkowiak M, Królak S, Winiarski M J, Krieger J A, et al. 2025 arXiv:2503.04400

    [18]

    Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, et al. 2024 Nat. Commun. 15 4373

    [19]

    Li H, Zhou X, Nummy T, Zhang J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704

    [20]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv:2504.16372

    [21]

    Sun W, Jiang Z, Hao B, Yan S, Zhang H, Wang M, Yang Y, Sun H, Liu Z, Ji D, Gu Z, Zhou J, Shen D, Feng D, Nie Y 2025 arXiv:2507.07409

    [22]

    Graser S, Maier T, Hirschfeld P, Scalapino D 2009 New J. Phys. 11 025016

    [23]

    Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F, Lee D H 2012 Physical Review B—Condensed Matter and Materials Physics 85 035414

    [24]

    Kubo K 2007 Phys. Rev. B 75 224509

    [25]

    Lu H, Wang Q 2025 Acta Phys.Sin. 74 177401 (in Chinese)[路洪艳,王强华 2025 物理学报 74 177401]

    [26]

    Li Y, Yang L 2025 Acta Phys.Sin. 74 177402 (in Chinese)[李义典, 杨乐仙 2025 物理学报 74 177402]

    [27]

    Du Z, Li J, Lu Y 2025 Acta Phys.Sin. 74 177103 (in Chinese)[杜政忠, 李婕, 卢毅, 2025 物理学报 74 177103]

    [28]

    Zheng Y, Shicong M, Wei W 2025 Acta Phys.Sin. 74 177403 (in Chinese)[郑姚远, 莫世聪, 吴为, 2025 物理学报 74 177403]

    [29]

    Li Y, Cao Y, Liu L, Peng P, Lin H, Pei C, Zhang M, Wu H, Du X, Zhao W, et al. 2025 Science Bulletin 70 180

    [30]

    Liu C, Huo M, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412

    [31]

    Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, et al. 2024 Nat. Commun. 15 7570

    [32]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, et al. 2025 National Science Review nwaf220

    [33]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv:2311.08212

    [34]

    Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q, Tao X, Zhang J 2025 arXiv:2501.14584

    [35]

    Zhao D, Zhou Y, Huo M, Wang Y, Nie L, Yang Y, Ying J, Wang M, Wu T, Chen X 2025 Science Bulletin

    [36]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D H, et al. 2025 Phys. Rev. Lett. 134 126001

    [37]

    Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M, Suthar A, Richter L, et al. 2024 Phys. Rev. Lett. 133 146002

    [38]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935

    [39]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K, et al. 2025 Nature 640 641

    [40]

    Liu Y, Ko E K, Tarn Y, Bhatt L, Li J, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y, Hwang H Y 2025 Nature Materials 24 1221–1227

    [41]

    Chen Z, Huang H, Xue Q 2025 Acta Phys.Sin. 74 097401 (in Chinese)[陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401]

    [42]

    Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 National Science Review nwaf253

    [43]

    Bhatt L, Jiang A Y, Ko E K, Schnitzer N, Pan G A, Segedin D F, Liu Y, Yu Y, Zhao Y F, Morales E A, Brooks C M, Botana A S, Hwang H Y, Mundy J A, Muller D A, Goodge B H 2025 arXiv:2501.08204

    [44]

    Shen J, Zhou G, Miao Y, Li P, Zhipeng Ou Y Chen, Wang Z, Luan R, Sun H, Feng Z, Yong X, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, He J, Chen Z 2025 arXiv:2502.17831

    [45]

    Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv:2506.01788

    [46]

    Hao B, Wang M, Sun W, Yang Y, Mao Z, Yan S, Sun H, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv:2505.12603

    [47]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 1

    [48]

    Li Q, Sun J, Boetzel S, Ou M, Xiang Z N, Lechermann F, Wang B, Wang Y, Zhang Y J, Cheng J, Eremin I M, Wen H H 2025 arXiv:2507.10399

    [49]

    Luo Z, Hu X, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001

    [50]

    Chen C Q, Luo Z, Wang M, Wú W, Yao D X 2024 Phys. Rev. B 110 014503

    [51]

    Leonov I V 2024 Phys. Rev. B 109 235123

    [52]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001

    [53]

    Tian P F, Ma H T, Ming X, Zheng X J, Li H 2024 Journal of Physics: Condensed Matter 36 355602

    [54]

    Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, et al. 2024 Phys. Rev. B 109 144511

    [55]

    Wang J X, Ouyang Z, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165140

    [56]

    Yang Q G, Jiang K Y, Wang D, Lu H Y, Wang Q H 2024 Physical Review B 109 L220506

    [57]

    Zhang M, Sun H, Liu Y B, Liu Q, Chen W Q, Yang F 2024 Phys. Rev. B 110 L180501

    [58]

    Zhang M, Chen C Q, Yao D X, Yang F 2025 arXiv:2505.15906

    [59]

    Zhang Y, Lin L F, Moreo A, Okamoto S, Maier T A, Dagotto E 2025 arXiv:2503.05075

    [60]

    Ouyang Z, He R Q, Lu Z Y 2025 arXiv:2503.08682

    [61]

    LaBollita H, Botana A S 2025 arXiv:2505.07394

    [62]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 National Science Review nwaf205

    [63]

    Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506

    [64]

    Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv:2503.17223

    [65]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Materials 9 80

    [66]

    You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Computational Materials 11 3

    [67]

    Zhan J, Gu Y, Wu X, Hu J 2025 Phys. Rev. Lett. 134 136002

    [68]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002

    [69]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505

    [70]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002

    [71]

    Liu Y B, Sun H, Zhang M, Liu Q, Chen W Q, Yang F 2025 Phys. Rev. B 112 014510

    [72]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470

    [73]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001

    [74]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141

    [75]

    Xia C, Liu H, Zhou S, Chen H 2025 Nat. Commun. 16 1054

    [76]

    Braz L B, Martins G B, da Silva L G G V D 2025 Phys. Rev. Res. 7 033023

    [77]

    Cao Y H, Jiang K Y, Lu H Y, Wang D, Wang Q H 2025 arXiv:2507.13694

    [78]

    Zhang M, Sun H, Liu Y B, Liu Q, Chen W Q, Yang F 2025 Phys. Rev. B 111 144502

    [79]

    Pan Z, Lu C, Yang F, Wu C 2024 Chin. Phys. Lett. 41 087401

    [80]

    Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. Lett. 132 146002

    [81]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401

  • [1] 李泊玉, 胡柯钧, 林仁菊, 韩昆, 黄振, 葛炳辉, 宋东升. 无限层镍基超导薄膜界面结构的电子显微学研究. 物理学报, doi: 10.7498/aps.74.20250171
    [2] 吕威, 聂子豪, 汪恒, 陈亚奇, 黄浩亮, 周广迪, 薛其坤, 陈卓昱. 镍基Ruddlesden-Popper相高温超导薄膜的制备与优化. 物理学报, doi: 10.7498/aps.74.20251080
    [3] 薛子威, 袁登鹏, 谭世勇. 新型非常规超导体UTe2的单晶生长方法研究进展. 物理学报, doi: 10.7498/aps.74.20241778
    [4] 杜政忠, 李婕, 卢毅. La3Ni2O7中近邻库仑相互作用诱导的电荷序. 物理学报, doi: 10.7498/aps.74.20250604
    [5] 李义典, 杨乐仙. 层状镍基超导体的电子结构和超快动力学. 物理学报, doi: 10.7498/aps.74.20250856
    [6] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象. 物理学报, doi: 10.7498/aps.73.20240917
    [7] 沈瑶. 镍基超导体中电荷序的实验研究进展. 物理学报, doi: 10.7498/aps.73.20240898
    [8] 杨金颖, 王彬彬, 刘恩克. 磁性拓扑材料中贝利曲率驱动的非常规电输运行为. 物理学报, doi: 10.7498/aps.72.20230995
    [9] 王朝, 张铭, 张持, 王如志, 严辉. n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf) 非常规铁电性的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202142
    [10] 胡江平. 探索非常规高温超导体. 物理学报, doi: 10.7498/aps.70.20202122
    [11] 李宇, 盛玉韬, 杨义峰. 重费米子超导理论和材料研究进展. 物理学报, doi: 10.7498/aps.70.20201418
    [12] 李建新. 自旋涨落与非常规超导配对. 物理学报, doi: 10.7498/aps.70.20202180
    [13] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, doi: 10.7498/aps.69.20191627
    [14] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理. 物理学报, doi: 10.7498/aps.68.20190801
    [15] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, doi: 10.7498/aps.67.20180936
    [16] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, doi: 10.7498/aps.66.037401
    [17] 冷春玲, 张英俏, 计新. 利用破坏对称性的超导人造原子制备型四比特纠缠态. 物理学报, doi: 10.7498/aps.64.184207
    [18] 王宇杰, 周俊敏, 钱萍, 申江. 镍基超导母体材料EuNi2Si2的结构和热力学性质研究. 物理学报, doi: 10.7498/aps.59.8776
    [19] 曹天德, 徐丽娜. 配对对称性与带间作用. 物理学报, doi: 10.7498/aps.54.1406
    [20] 孙久勋, 章立源. s+d混合波对称性下联合模型的超导电性. 物理学报, doi: 10.7498/aps.45.1913
计量
  • 文章访问数:  54
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回