搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自发单质子放射性核半衰期数据的理论计算

王翰林 王震 任中洲

引用本文:
Citation:

自发单质子放射性核半衰期数据的理论计算

王翰林, 王震, 任中洲

Theoretical calculations on the half-lives of spontaneous one-proton radioactivity

WANG Hanlin, WANG Zhen, REN Zhongzhou
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 核子滴线外的不稳定原子核的研究是探测极端质子-中子比体系中核子相互作用与核结构的重要手段,其中质子滴线外的大量原子核以单质子放射性作为主要的衰变模式.使用形变的WoodsSaxon势和自旋-轨道耦合相互作用与多极展开的形变Coulomb势,构造了质子-子核两体相互作用,并基于量子隧穿模型和微观的Gamow态理论,以首个被实验发现的基态质子放射核之一的151Lu为例,展示了理论模型的计算过程,之后系统性地计算了目前实验观测到的大量质子放射性核的半衰期数据,并在使用不同核数据的情况下,对结果与实验值的相符性进行了对比,评估了质子放射性对衰变能和谱因子数据的依赖性.结果表明质子放射性对衰变能的依赖程度较高.此外,基于现有的实验观测结果,对下方相邻的fpg壳层中可能存在的一些更轻的质子放射核的半衰期进行了理论预言.以上计算结果被汇总为了目前比较全面地包括现有的质子放射核(50 < Z < 84)和理论预言的质子放射核(30 < Z < 50)半衰期的数据集,为实验上进一步探索质子滴线提供了理论参考.本文数据集可在科学数据银行https://www.doi.org/10.57760/sciencedb.27551中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/zQzA3e).
    The study of unstable nuclei beyond the nucleon drip line is an important method to study the nuclear interaction and structure in the extremely neutron- or proton-rich system, and various nuclides beyond the proton drip line mainly decay by spontaneous one-proton emission. Using the deformed Woods-Saxon potential, spin-orbit potential and the expanded Coulomb potential to construct the daughter-proton potential, based on the quantum tunneling model and the microscopic Gamow state theory, the half-lives data of various proton emitters are systematically calculated. By using nuclear data from different source and comparing to experiments, the dependence of proton emission on decay energy and spectroscopic factors is evaluated. Additionally, based on previous observations, the half-life of the possibly lighter proton emitter in the fpg-shell below has been theoretically predicted. Our results are compiled into a comprehensive dataset of half-lives for both experimentally confirmed emitters (50 < Z < 84) and theoretically predicted emitters (30 < Z < 50), providing a useful reference for future experimental investigations related to the proton drip line. The datasets presented in this paper, including our results of calculation, are openly available at https://www.doi.org/10.57760/sciencedb.27551 (Please use the private access link https://www.scidb.cn/s/zQzA3e to access the dataset during the peer review process).
  • [1]

    Ren Z Z, Xu G O 1991 Acta Phys. Sin. 40 1229. (in Chinese) [任中洲, 徐躬耦 1991 物理学报 40, 1229]

    [2]

    Ding B G, Lu D H, Zhang D L 2007 Acta Phys. Sin. 56 6905. (in Chinese) [丁斌刚, 鲁定辉, 张大立 2007 物理学报 56, 6905]

    [3]

    National Nuclear Data Center, https://www.nndc.bnl.gov

    [4]

    Sarmiento L G, Roger T, Giovinazzo J, Brown B A, Blank B, Rudolph D, Kankainen A, Alvarez-Pol H, Raj A A, Ascher P, Block M, Caamaño-Fresco M, Caceres L, Canete L, Cox D M, Eronen T, Fahlander C, Fernández-Domínguez B, Forsberg U, Lois-Fuentes J, Gerbaux M, Gerl J, Golubev P, Grévy S, Grinyer G F, Habermann T, Hakala J, Jokinen A, Kamalou O, Kojouharov I, Kolhinen V S, Koponen J, Kurz N, Lalović N, Lorenz C, Mauss B, Mentana A, Moore I D, Ortega Moral A, Pancin J, Papadakis P, Pibernat J, Piot J, Pohjalainen I, Reinikainen J, Rinta-Antila S, Schaffner H, Sorlin O, Stodel C, Thomas J C, Versteegen M, Voss A 2023 Nat. Commun. 14 5961

    [5]

    Giovinazzo J, Roger T, Blank B, Rudolph D, Brown B A, Alvarez-Pol H, Arokia Raj A, Ascher P, Caamaño-Fresco M, Caceres L, Cox D M, Fernández-Domínguez B, Lois-Fuentes J, Gerbaux M, Grévy S, Grinyer G F, Kamalou O, Mauss B, Mentana A, Pancin J, Pibernat J, Piot J, Sorlin O, Stodel C, Thomas J C, Versteegen M 2021 Nat. Commun. 12 4805

    [6]

    Ye Y L, Yang X F, Sakurai H, Hu B S 2024 Nat. Rev. Phys. 7 21

    [7]

    Karny M, Rykaczewski K, Grzywacz R K, Batchelder J C, Bingham C R, Goodin C, Gross C J, Hamilton J H, Korgul A, Królas W, Liddick S N, Li K, Maier K H, Mazzocchi C, Piechaczek A, Rykaczewski K, Schapira D, Simpson D, Tantawy M N, Winger J A, Yu C H, Zganjar E F, Nikolov N, Dobaczewski J, Kruppa A T, Nazarewicz W, Stoitsov M V 2008 Phys. Lett. B 664 52

    [8]

    Zhang W, Cederwall B, Aktas O, Liu X, Ertoprak A, Nyberg A, Auranen K, Alayed B, Badran H, Boston H, Doncel M, Forsberg U, Grahn T, Greenlees P T, Guo S, Heery J, Hilton J, Jenkins D, Julin R, Juutinen S, Luoma M, Neuvonen O, Ojala J, Page R D, Pakarinen J, Partanen J, Paul E S, Petrache C, Rahkila P, Ruotsalainen P, Sandzelius M, Sarén J, Szwec S, Tann H, Uusitalo J, Wadsworth R 2022 Commun. Phys. 5 285

    [9]

    Auranen K, Seweryniak D, Albers M, Ayangeakaa A D, Bottoni S, Carpenter M, Chiara C J, Copp P, David H M, Doherty D T, Harker J, Hoffman C R, Janssens R V F, Khoo T L, Kuvin S A, Lauritsen T, Lotay G, Rogers A M, Scholey C, Sethi J, Talwar R, Walters W B, Woods P J, Zhu S 2019 Phys. Lett. B 792 187

    [10]

    Jackson K P, Cardinal C U, Evans H C, Jelley N A, Cerny J 1970 Phys. Lett. B 33 281

    [11]

    Delion D S, Dumitrescu A 2021 Phys. Rev. C 103 054325

    [12]

    Ni D D, Ren Z Z 2015 Annals Phys. 358 108

    [13]

    Zhang D M, Qi L J, Gui H F, Luo S, He B, Wu X J, Li X H 2023 Phys. Rev. C 108 024318

    [14]

    Qian Y B, Ren Z Z 2016 Eur. Phys. J. A 52 68

    [15]

    Cheng J H, Pan X, Zou Y T, Li X H, Zhang Z, Chu P C 2020 Eur. Phys. J. A 56 273

    [16]

    Routray T R, Mishra A, Tripathy S K, Behera B, Basu D N 2012 Eur. Phys. J. A 48 77

    [17]

    Esbensen H, Davids C N 2000 Phys. Rev. C 63 014315

    [18]

    Ferreira L S, Maglione E, Ring P 2011 Phys. Lett. B 701 508

    [19]

    Tsunoda N, Otsuka T, Takayanagi K, Shimizu N, Suzuki T, Utsuno Y, Yoshida S, Ueno H 2020 Nature 587 66

    [20]

    Jain A, Parab P, Saxena G, Aggarwal M 2024 Sci. Rep. 14 28368

    [21]

    Wang Z, Bai D, Ren Z Z 2022 Phys. Rev. C 105 024327

    [22]

    Wang Z, Ren Z Z 2022 Phys. Rev. C 106 024311

    [23]

    Xing F Z, Le X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301. (in Chinese) [邢凤竹, 乐先 凯, 王楠, 王艳召 2025 物理学报 74, 112301]

    [24]

    Wang Z, Ren Z Z 2023 Phys. Rev. C 108 024306

    [25]

    Sheng Z Q, Shu L P, Meng Y, Hu J G, Qian J F 2014 Acta Phys. Sin. 63 162302. (in Chinese) [圣 宗强, 舒良萍, 孟影, 胡继刚, 钱建发 2014 物理学报 63, 162302]

    [26]

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta Phys. Sin. 71 062301. (in Chinese) [邢凤竹, 崔建 坡, 王艳召, 顾建中 2022 物理学报 71, 062301]

    [27]

    Delion D S, Ghinescu S 2025 J. Phys. G: Nucl. Part. Phys. 52 055105

    [28]

    Maglione E, Ferreira L S, Liotta R J 1998 Phys. Rev. Lett. 81 538

    [29]

    Buck B, Merchant A C, Perez S M 1992 Phys. Rev. C 45 1688

    [30]

    Talou P, Strottman D, Carjan N 1999 Phys. Rev. C 60 054318

    [31]

    Bhagwat A, Viñas X, Centelles M, Schuck P, Wyss R 2010 Phys. Rev. C 81 044321

    [32]

    Wu Z Y, Qi C, Wyss R, Liu H L 2015 Phys. Rev. C 92 024306

    [33]

    Bykhalo G I, Orlin V N, Stopani K A arXiv:2107.08245 [nucl-th]

    [34]

    Sheng Z Q, Fan G W, Qian J F, Hu J G 2015 Eur. Phys. J. A 51 40

    [35]

    Delion D S 2010 Theory of particle and cluster emission (Springer)

    [36]

    Åberg S, Semmes P B, Nazarewicz W 1997 Phys. Rev. C 56 1762

    [37]

    Delion D S, Liotta R J, Wyss R 2006 Phys. Rep. 424 113

    [38]

    Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001

    [39]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 Atom. Data Nucl. Data Tables 109-110 1

    [40]

    Huang W J, Wang M, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030002

    [41]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003

    [42]

    Zhang H F, Wang Y J, Dong J M, Li J Q, Scheid W 2010 J. Phys. G: Nucl. Part. Phys. 37 085107

    [43]

    Soylu A, Koyuncu F, Gangopadhyay G, Dehghani V, Alavi S A 2021 Chin. Phys. C 45 044108

    [44]

    Chen J L, Xu J Y, Deng J G, Li X H, He B, Chu P C 2019 Eur. Phys. J. A 55 214

    [45]

    Davids C N, Woods P J, Mahmud H, Davinson T, Heinz A, Ressler J J, Schmidt K, Seweryniak D, Shergur J, Sonzogni A A, Walters W B 2004 Phys. Rev. C 69 011302

    [46]

    Poli G L, Davids C N, Woods P J, Seweryniak D, Carpenter M P, Cizewski J A, Davinson T, Heinz A, Janssens R V F, Lister C J, Ressler J J, Sonzogni A A, Uusitalo J, Walters W B 2001 Phys. Rev. C 63 044304

    [47]

    Čeliković I, Lewitowicz M, Gernhäuser R, Krücken R, Nishimura S, Sakurai H, Ahn D S, Baba H, Blank B, Blazhev A, Boutachkov P, Browne F, de France G, Doornenbal P, Faestermann T, Fang Y, Fukuda N, Giovinazzo J, Goel N, Górska M, Ilieva S, Inabe N, Isobe T, Jungclaus A, Kameda D, Kim Y K, Kwon Y K, Kojouharov I, Kubo T, Kurz N, Lorusso G, Lubos D, Moschner K, Murai D, Nishizuka I, Park J, Patel Z, Rajabali M, Rice S, Schaffner H, Shimizu Y, Sinclair L, Söderström P A, Steiger K, Sumikama T, Suzuki H, Takeda H, Wang Z, Watanabe H, Wu J, Xu Z 2016 Phys. Rev. Lett. 116 162501

    [48]

    Lalazissis G A, Vretenar D, Ring P 2001 Nucl. Phys. A 679 481

    [49]

    Xu X D, Mukha I, Grigorenko L V, Scheidenberger C, Acosta L, Casarejos E, Chudoba V, Ciemny A A, Dominik W, Duénas-Díaz J, Dunin V, Espino J M, Estradé A, Farinon F, Fomichev A, Geissel H, Golubkova T A, Gorshkov A, Janas Z, Kamiński G, Kiselev O, Knöbel R, Krupko S, Kuich M, Litvinov Y A, Marquinez-Durán G, Martel I, Mazzocchi C, Nociforo C, Ordúz A K, Pfützner M, Pietri S, Pomorski M, Prochazka A, Rymzhanova S, Sánchez-Benítez A M, Sharov P, Simon H, Sitar B, Slepnev R, Stanoiu M, Strmen P, Szarka I, Takechi M, Tanaka Y K, Weick H, Winkler M, Winfield J S 2018 Phys. Rev. C 97 034305

    [50]

    Xu X D, Mukha I, Li J G, Wang S M, Acosta L, Bajzek M, Casarejos E, Cortina-Gil D, Espino J M, Fomichev A, Geissel H, Gómez-Camacho J, Grigorenko L V, Kiselev O, Korsheninnikov A A, Kostyleva D, Kurz N, Litvinov Y A, Martel I, Nociforo C, Pfützner M, Rodríguez-Tajes C, Scheidenberger C, Stanoiu M, Sümmerer K, Weick H, Woods P J, Zhukov M V 2025 Phys. Rev. Lett. 135 022502

  • [1] 田榕赫, 杨东, 于伟翔, 黄小龙, 李小安, 石明松. 探测器高能伽马效率刻度用放射性核素56Co的衰变数据. 物理学报, doi: 10.7498/aps.74.20250743
    [2] 夏金戈, 李伟峰, 方基宇, 牛中明. 原子核β衰变寿命经验公式. 物理学报, doi: 10.7498/aps.73.20231653
    [3] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, doi: 10.7498/aps.72.20230213
    [4] 周斌, 于全芝, 张宏斌, 张雪荧, 鞠永芹, 陈亮, 阮锡超. 80.5 MeV/u碳离子诱发铜靶的放射性剩余产物测量. 物理学报, doi: 10.7498/aps.70.20201503
    [5] 王世联, 李奇, 赵允刚, 张新军, 樊元庆, 王晓明, 贾怀茂, 陈占营, 刘蜀疆, 常印忠, 石建芳. 2020年6月北欧大气中微量134Cs, 137Cs和103Ru等放射性核素的技术分析. 物理学报, doi: 10.7498/aps.69.20201397
    [6] 田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平. 基于放射性气体源体积的虚拟源刻度技术. 物理学报, doi: 10.7498/aps.65.062901
    [7] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化. 物理学报, doi: 10.7498/aps.64.154101
    [8] 陈泽, 张小平, 杨洪应, 郑强, 陈娜娜, 支启军. 等待点N=82附近核素β-衰变寿命的研究. 物理学报, doi: 10.7498/aps.63.162301
    [9] 杨辰, 房超, 张建, 曹建主. 球床高温气冷堆燃料颗粒中放射性核素的累积释放份额研究. 物理学报, doi: 10.7498/aps.63.032802
    [10] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究. 物理学报, doi: 10.7498/aps.63.162302
    [11] 田自宁, 欧阳晓平, 曾鸣, 成智威. 积分中值定理在放射性氙样品γ谱效率刻度技术中的应用. 物理学报, doi: 10.7498/aps.62.162902
    [12] 金宝, 蔡军, 陈义学. 放射性核素铀在针铁矿中的占位研究. 物理学报, doi: 10.7498/aps.62.087101
    [13] 李凤, 马忠权, 孟夏杰, 殷晏庭, 于征汕, 吕鹏. 晶硅太阳电池中Fe-B对与少子寿命、陷阱浓度及内量子效率的相关性. 物理学报, doi: 10.7498/aps.59.4322
    [14] 杨介甫. 关于用放射性同位素传感液位的严格线性刻度和放射源的强度分布. 物理学报, doi: 10.7498/aps.34.205
    [15] 吴丹迪, 李铁忠, 张肇西, 黄涛, 谢诒成. 场流关系和新粒子的衰变宽度. 物理学报, doi: 10.7498/aps.25.78
    [16] 高美娟, 陈金全, 施士元. 对关联对于Pb208附近α衰变的影响——α约化宽度的绝对值的计算. 物理学报, doi: 10.7498/aps.21.1725
    [17] 宋行长. 超子的非轻子衰变与么正对称性. 物理学报, doi: 10.7498/aps.20.1048
    [18] 罗辽复, 陆埮, 杨国琛. μ介子寿命与μ-e对称性的实验限度. 物理学报, doi: 10.7498/aps.20.1101
    [19] 彭桓武. 寿命关联实验的重要性. 物理学报, doi: 10.7498/aps.18.165
    [20] 超子及K介子衰变的分枝比和平均寿命间的比例. 物理学报, doi: 10.7498/aps.15.63
计量
  • 文章访问数:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回