-
高能重带电粒子能直接穿透靶原子核外电子层, 与原子核发生直接碰撞, 发生散裂反应, 产生一系列具有放射性的剩余产物核. 重带电粒子诱发靶材放射性剩余核与辐射防护和人员安全有着密切联系, 当前, 大部分剩余核产额主要依靠蒙特卡罗粒子输运程序进行模拟计算, 其准确程度亟需通过实验测量进行准确评估. 本文利用能量为80.5 MeV/u的12C6+ 粒子对薄铜靶开展了辐照实验与伽玛射线测量, 结合伽玛谱学分析方法, 得出了辐照产生的18种放射性剩余产物的初始活度和产生截面值, 并与PHITS模拟结果进行对比. 结果表明, PHITS模拟程序对放射性剩余核种类的估计具有较高可靠性, 在其绝对产额方面, 与实验测量仍具有较大偏差.Radioactive residual nuclides, which are usually closely related to radiation protection and personnel safety, will be generated when target materials are irradiated by high energy particles. Based on different nuclear reaction models, Monte Carlo code is a usual method to obtain residual nuclide production. The simulation accuracy needs to be evaluated by experimental data. In this paper, an irradiation experiment of thin copper target irradiated by 12C6+ particles with energy of 80.5 MeV/u is carried out. The radioactivities and cross-sections of 18 radioactive residual nuclides are obtained by gamma spectrometry analysis. Compared with the Monte Carlo simulation by PHITS, the results show that the spallation model of PHITS has a high reliability in estimating the types of radioactive residual nuclei, and it could be optimized in the aspect of the absolute yield.
-
Keywords:
- spallation reactions /
- residual nuclides /
- Monte Carlo simulations /
- gamma spectrometry method
[1] Xia J W, Zhan W L, Wei B W, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 488 11Google Scholar
[2] Wei J, Chen H S, Chen Y W, et al. 2009 Nucl. Instumr. Methods Phys. Res., A 600 10Google Scholar
[3] 朱升云, 郭刚, 何明, 吴振东, 袁大庆, 隋丽, 焦学胜, 常宏伟, 左义, 范平, 葛智刚, 陈东风 2020 原子能科学技术 54 1Google Scholar
Zhu S Y, Guo G, He M, Wu Z D, Ruan D Q, Sui L, Jiao X S, Chang H W, Zuo Y, Fan P, Ge Z G, Chen D F 2020 Atom. Ener. Sci. Technol. 54 1Google Scholar
[4] 刘世耀 2012 质子和重离子治疗及其装置 (北京: 科学出版社) 第152页
Liu S Y 2012 Proton and Heavy Ions Therapy and Facility (Beijing: Science Press) p152 (in Chinses)
[5] Villagrasa-Cabton C, Boudard A, Ducret J E, et al. 2007 Phys. Rev. C 75 044603Google Scholar
[6] 林源根, 詹文龙, 郭忠言, 等 1998 物理学报 47 564Google Scholar
Lin Y G, Zhan W L, Guo Z Y, et al. 1998 Acta Phys. Sin. 47 564Google Scholar
[7] Roger E B, Daniel R M, Glenn T S 1951 Phys. Rev. 84 671Google Scholar
[8] Cumming J B, Haustein P E, Stoenner R W 1974 Phys. Rev. C 10 739Google Scholar
[9] Cumming J B, Stoenner R W 1976 Phys. Rev. C 14 1554Google Scholar
[10] Cumming J B, Haustein P E, Ruth T J, Virtes G J 1978 Phys. Rev. C 17 1632Google Scholar
[11] Porile N T, Cole G D, Rudy C R 1979 Phys. Rev. C 19 2288Google Scholar
[12] Hicks K H, Ward T E, Bowman H, et al. 1982 Phys. Rev. C 26 2016Google Scholar
[13] Whitfield J P, Porile N T, 1993 Phys. Rev. C 47 1636Google Scholar
[14] Michel R, Gloris M, Lange H J, et al. 1995 Nucl. Instrum. Methods Phys. Res., Sect. B 103 183Google Scholar
[15] Michel R, Bodemann R, Busemann H, et al. 1997 Nucl. Instrum. Methods Phys. Res., Sect. B 129 153Google Scholar
[16] Titarenko Y E, Shvedov O V, Igumnov M M, et al. 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 414 73Google Scholar
[17] Titarenko Y E, Shvedov O V, Batyaev V F, et al. 2002 Phys.Rev.C 65 064610Google Scholar
[18] Yashima H, Uwamino Y, Sugita H, et al. 2002 Phys.Rev.C 66 044607Google Scholar
[19] Yashima H, Uwamino Y, Iwase H, et al. 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 226 243Google Scholar
[20] Shams A M, Uosif M A, Michel R, et al. 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 298 19Google Scholar
[21] Ogawa T, Morev M N, Sato T, Hashimoto S ???? Nucl. Instrum. Methods Phys. Res., Sect. B 300 35
[22] Ge H L, Ma F, Zhang X Y, et al. 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 337 34Google Scholar
[23] Zhang H B, Zhang X Y, Ma F, et al. 2015 Chin. Phys. Lett. 32 042501Google Scholar
[24] Tatsuhiko S, Koji N, Norihiro M, et al. 2013 J Nucl. Sci. Technol. 50 913Google Scholar
-
表 1 长半衰期放射性剩余核的测量活度值
Table 1. Radioactivity of long-life residual nuclides
剩余核名称 半衰期/d T = 11.8 d/Bq T = 6.8 d/Bq 推导值/Bq T = 3.8 d/Bq 推导值/Bq 51Cr 27.7 1526.2 1695.1 1729.6 1831.9 1864.5 48V 15.97 1107.9 1351.0 1376.4 1512.9 1567.8 52Mn 5.59 934.9 1690.1 1737.9 2437.4 2521.0 58Co 70.82 876.1 893.5 920.0 949.7 947.5 56Co 77.27 239.1 233.5 250.1 233.6 256.9 44 mSc 2.44 228.9 907.4 536.4 2105.5 2218.0 57Co 271.79 211.3 209.4 214.0 216.5 215.7 46Sc 83.79 169.7 179.9 176.9 174.9 181.3 47Sc 3.345 155.2 433.7 437.4 799.6 814.4 54Mn 312.3 140.7 139.8 142.3 139.2 143.2 59Fe 44.5 58.1 55.6 60.9 65.1 65.8 表 2 剩余核实验测量与模拟活度值(冷却时间3.8 d)
Table 2. Radioactivity of residual nuclides in copper target by measurement and PHITS simulation (cooling for 3.8 d).
剩余核
名称半衰期 模拟活
度值/Bq实测活
度值/BqExp./Cal. 47Sc 3.345d 2832.3 799.6 ± 29.9 0.28 51Cr 27.7d 1953.0 1831.9 ± 68.5 0.94 44Sc 2.927h 1920.0 4507.8 ± 288.6 2.47 48V 15.97d 1642.2 1512.9 ± 110.1 0.86 44mSc 58.6h 1813.3 2105.5 ± 78.8 1.22 48Sc 43.67h 1416.6 152.0 ± 13.2 0.11 52Mn 5.59d 1106.3 2437.4 ± 111.7 2.20 58Co 70.82d 915.5 949.7 ± 43.5 1.04 7Be 53.29d 776.7 186.3 ± 12.9 0.24 43K 22.3h 598.6 143.3 ± 5.4 0.24 32P 14.26d 490.4 纯β衰变 — 57Ni 35.6h 486.5 203.2 ± 13.5 0.42 46Sc 83.79d 408.7 174.9 ± 9.6 0.43 33P 14.26d 327.8 纯β衰变 — 47Ca 4.536d 233.2 特征峰微弱 — 57Co 271.79d 214.4 216.5 ± 8.1 1.01 56Co 77.27d 213.3 233.6 ± 15.5 1.09 37Ar 35.04d 208.6 纯β衰变 — 54Mn 312.3d 199.6 139.2 ± 6.4 0.70 42K 12.36h 176.3 特征峰微弱 — 49V 330d 163.5 纯β衰变 — 3H 12.33a 130.3 纯β衰变 55Co 17.53h 116.4 133.1 ± 13.8 1.14 59Fe 44.5d 109.4 61.8 ± 5.8 0.56 48Cr 21.56h 93.5 47.5 ± 1.8 0.51 表 3 铜靶放射性剩余产物的反应截面
Table 3. Cross sections of residual nuclides in copper target by measurement and PHITS simulation.
剩余核名称 测量截面值/mb 模拟截面值/mb 7Be 9.11 ± 0.98 38.0 43K 2.05 ± 0.19 8.6 44 mSc 13.37 ± 1.21 10.9 46Sc 13.21 ± 1.31 30.9 47Sc 5.10 ± 0.46 18.1 48Sc 1.04 ± 0.13 9.7 48V 24.93 ± 2.75 28.5 48Cr 0.72 ± 0.07 1.4 51Cr 48.78 ± 4.41 48.0 52Mn 19.16 ± 1.81 8.7 54Mn 38.28 ± 3.61 38.3 55Co 3.26 ± 0.43 2.9 56Co 16.31 ± 1.72 14.9 57Co 51.88 ± 4.69 51.4 58Co 60.97 ± 5.76 58.8 57Ni 1.59 ± 0.17 3.8 59Fe 2.55 ± 0.32 4.5 -
[1] Xia J W, Zhan W L, Wei B W, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 488 11Google Scholar
[2] Wei J, Chen H S, Chen Y W, et al. 2009 Nucl. Instumr. Methods Phys. Res., A 600 10Google Scholar
[3] 朱升云, 郭刚, 何明, 吴振东, 袁大庆, 隋丽, 焦学胜, 常宏伟, 左义, 范平, 葛智刚, 陈东风 2020 原子能科学技术 54 1Google Scholar
Zhu S Y, Guo G, He M, Wu Z D, Ruan D Q, Sui L, Jiao X S, Chang H W, Zuo Y, Fan P, Ge Z G, Chen D F 2020 Atom. Ener. Sci. Technol. 54 1Google Scholar
[4] 刘世耀 2012 质子和重离子治疗及其装置 (北京: 科学出版社) 第152页
Liu S Y 2012 Proton and Heavy Ions Therapy and Facility (Beijing: Science Press) p152 (in Chinses)
[5] Villagrasa-Cabton C, Boudard A, Ducret J E, et al. 2007 Phys. Rev. C 75 044603Google Scholar
[6] 林源根, 詹文龙, 郭忠言, 等 1998 物理学报 47 564Google Scholar
Lin Y G, Zhan W L, Guo Z Y, et al. 1998 Acta Phys. Sin. 47 564Google Scholar
[7] Roger E B, Daniel R M, Glenn T S 1951 Phys. Rev. 84 671Google Scholar
[8] Cumming J B, Haustein P E, Stoenner R W 1974 Phys. Rev. C 10 739Google Scholar
[9] Cumming J B, Stoenner R W 1976 Phys. Rev. C 14 1554Google Scholar
[10] Cumming J B, Haustein P E, Ruth T J, Virtes G J 1978 Phys. Rev. C 17 1632Google Scholar
[11] Porile N T, Cole G D, Rudy C R 1979 Phys. Rev. C 19 2288Google Scholar
[12] Hicks K H, Ward T E, Bowman H, et al. 1982 Phys. Rev. C 26 2016Google Scholar
[13] Whitfield J P, Porile N T, 1993 Phys. Rev. C 47 1636Google Scholar
[14] Michel R, Gloris M, Lange H J, et al. 1995 Nucl. Instrum. Methods Phys. Res., Sect. B 103 183Google Scholar
[15] Michel R, Bodemann R, Busemann H, et al. 1997 Nucl. Instrum. Methods Phys. Res., Sect. B 129 153Google Scholar
[16] Titarenko Y E, Shvedov O V, Igumnov M M, et al. 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 414 73Google Scholar
[17] Titarenko Y E, Shvedov O V, Batyaev V F, et al. 2002 Phys.Rev.C 65 064610Google Scholar
[18] Yashima H, Uwamino Y, Sugita H, et al. 2002 Phys.Rev.C 66 044607Google Scholar
[19] Yashima H, Uwamino Y, Iwase H, et al. 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 226 243Google Scholar
[20] Shams A M, Uosif M A, Michel R, et al. 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 298 19Google Scholar
[21] Ogawa T, Morev M N, Sato T, Hashimoto S ???? Nucl. Instrum. Methods Phys. Res., Sect. B 300 35
[22] Ge H L, Ma F, Zhang X Y, et al. 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 337 34Google Scholar
[23] Zhang H B, Zhang X Y, Ma F, et al. 2015 Chin. Phys. Lett. 32 042501Google Scholar
[24] Tatsuhiko S, Koji N, Norihiro M, et al. 2013 J Nucl. Sci. Technol. 50 913Google Scholar
计量
- 文章访问数: 6327
- PDF下载量: 227
- 被引次数: 0