-
采用毛细管放电抽运方案,获得了类氖氩( Ar8+)离子46.9 nm和69.8nm双波长激光输出。在此基础上,研究了初始氩气气压和主脉冲电流幅值对46.9 nm和69.8 nm激光强度的影响规律。实验结果表明,每个主脉冲电流条件下,都存在最佳的初始气压值,且69.8 nm激光的最佳气压值低于46.9 nm激光的最佳气压值。根据最佳气压时的激光强度随主脉冲电流幅值的变化曲线,46.9 nm和69.8 nm激光的最佳电流值分别为10.9 kA和14.5 kA。当主脉冲电流幅值为14.5 kA,初始气压为18.5 Pa时,可获得46.9 nm和69.8 nm均较强的双波长激光。Dual-wavelength lasers in the EUV (extreme ultraviolet) band can be applied in many fields such as high-resolution imaging, EUV nonlinear optics, and high-density plasma diagnostics. In this paper, the 46.9 nm and 69.8 nm dual-wavelength laser of Ne-like Ar (Ar8+) ion pumped by capillary discharge has been obtained. In order to realize to change the amplitude of the main pulse current over a wide range, several parameters of the main pulse power supply such as charging voltage of the Marx generator, the conduction voltage of the spark gap switch, and the conductivity of the deionized water in the Blumlein transmission line, have been adjusted to vary the amplitude of the main pulse current from 8.4 kA to 15.8 kA. On this basis, the influence of the initial argon pressure and the main pulse current amplitude on the intensities of 46.9 nm and 69.8 nm lasers were studied. The experimental results show that there is an optimum pressure under every main pulse current amplitude. The optimum pressures for 69.8 nm laser are lower than those for the 46.9 nm laser. Based on the variation of laser intensity with the initial pressure and the main pulse current amplitude, the optimal experimental parameters for the 46.9 nm laser are current of 10.9 kA and initial pressure of 18.1 Pa and those for the 69.8 nm laser are current of 14.5 kA and initial pressure of 18.5 Pa. When the main pulse current amplitude is 14.5 kA and the initial pressure is 18.5 Pa, the dual-wavelength laser with both strong 46.9 nm and 69.8 nm laser can be obtained. The different influencing rules of the initial pressure and the main pulse current on the 46.9nm and 69.8nm lasers can guide other groups to explore the possibility of achieving 69.8 nm laser by using the existing 46.9 nm laser device. Meanwhile, the research on the optimal parameters of 46.9 nm and 69.8 nm lasers is benefit to enhance the energy of lasers and expand their application fields. One of future studies will focus on the applications of the dual-wavelength laser in sum frequency and difference frequency of EUV lasers.
-
Keywords:
- extreme ultraviolet (EUV) laser /
- capillary discharge /
- Ne-like Ar /
- 46.9 nm /
- 69.8 nm
-
[1] Zhou H, Hussain M M, Banerjee P. P. 2022 Light Adv. Manuf. 3 17
[2] Lei J, Zhang L, Song Y F, Zhang L, et al. 2023 Opt. Laser Technol. 164 109522
[3] Shahmohammadi M, Kapsalidis F, Süess M J, et al. 2019 Semicond. Sci. Tech. 34 083001
[4] Li X R, Ye Y, Li Ke, et al. 2025 IEEE Photonics J. 17 1501207
[5] Cui H Y, Shen Y J, Zhao D D, et al. 2024 Chin. J. Lasers 51 0701009 (in Chinese) [崔怀愈, 申玉杰, 赵东迪, 等. 2024 中国激光 51 0701009]
[6] Rocca J J, Shlyaptsev V, Tomasel F G, et al. 1994 Phys. Rev. Lett. 73 2192
[7] Macchietto C D, Benware B R, Rocca J J. 1999 Opt. Lett. 24 1115
[8] Khan M U, Zhao Y P, Hui T, et al. 2019 Opt. Express 27 16738
[9] Khan M U, Zhao Y P, Zhao D D, et al. 2020 Chin. Opt. Lett. 18 111403
[10] Ritucci A, Tomassetti G, Reale A, et al. 2004 Phys. Rev. A 70 023818
[11] Zhao D D, Zhao Y P, Cui H Y, et al. 2023 Chin. Opt. Lett. 21 53401
[12] Zhao D D, Zhao Y P, Cui H Y, et al. 2023 Matter Radiat. Extremes 8 044402
[13] Fekete B, Kiss M, Shapolov A A, et al. 2023 Opt. Express 31 34381
[14] Fekete B, Kiss M, Shapolov A A, et al. 2024 IEEE T. Plasma Sci. 52 4786
[15] Tan C A, Kwek K H. 2007 J. Phys. D Appl. Phys. 40 4787
[16] Tan C A, Kwek K H. 2007 Phys. Rev. A. 75 043808
[17] Niimi G, Hayashi Y, Sakamoto N, et al. 2002 IEEE T. Plasma Sci. 30 616
[18] Barnwal S, Nigam S, Kodakkat A, et al. 2016 Appl. Phys. B 122 169
[19] Kim D E, Kim D S, Osterheld A L. 1998 J. App. Phys. 84 5862
[20] Rocca J J, Tomasel F G, Marconi M C, et al. 1995 Phys. Plasmas 2 2547
[21] Hildebrand A, Ruhrmann A, Maurmann S, et al. 1996 Phys. Lett. A 221 335
[22] Zhao Y P, Jiang S, Xie Y, et al. 2011 Opt. Lett. 36 3458
[23] Zhao Y P, Li L B, Cui H Y, Jiang S, Liu T, Zhang W H, Li W. 2016 Acta Phys. Sin. 65 095201 (in Chinese) [赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 2016 物理学报 65 095201]
[24] Liu T, Zhao Y P, Ding Y J, Li X Q, Cui H Y, Jiang S. 2017 Acta Phys. Sin. 66 155201 (in Chinese) [刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 2017 物理学报66 155201]
[25] Zhao Y P, Liu T, Zhang W H, et al. 2016 Opt. Lett. 41 3779
[26] Liu T, Zhao Y P, Cui H Y, Liu X L. 2019 Acta Phys. Sin. 68 025201 (in Chinese) [刘涛, 赵永蓬, 崔怀愈, 刘晓琳. 2019物理学报68 025201]
[27] Zhao Y P, Liu T, Jiang S, et al. 2016 Appl. Phys. B 122 107
[28] Zhao D D, Cui H Y, Wang S, et al. 2025 Opt. Commun. 575 131257
[29] Kukhlevsky S V, Ritucci A, Kozma I Z, et al. 2002 Contrib. Plasma Phys. 42 109-118
计量
- 文章访问数: 43
- PDF下载量: 4
- 被引次数: 0








下载: