亮点文章

摘要 +
物理老化很大程度上限制了非晶合金工程应用, 力学激励是一种有效的调控非晶合金能量状态并克服此问题的手段. 本文以Pd20Pt20Cu20Ni20P20非晶合金为模型体系, 使用动态力学分析仪开展高温线性机械循环-回复实验, 基于两相Kelvin模型和特征时间连续谱, 探索了非晶合金机械循环过程中的变形特征及年轻化机制. 结果表明, 机械循环过程中应变和应变速率随机械循环强度提高而增加, 循环加载耗散分量在热力学能量转换中起主导作用. 提高机械循环强度可促进黏弹性变形, 激活非晶合金固有的缺陷, 增加动力学非均匀性, 导致非晶合金变形更倾向于流动的液体. 借助差示扫描量热仪建立了非晶合金变形和能量状态的内禀性关联, 机械循环过程中年轻化起源于黏弹性应变诱导吸热过程. 相较于传统蠕变变形, 机械循环具有更高的年轻化潜力. 该研究为高温流变调控非晶合金的能量状态提供了理论依据, 为进一步理解非晶合金序微观结构非均匀性和年轻化之间的关联提供新的思路.

摘要 +
本文基于类比引力模型, 对声学黑洞的超辐射和霍金辐射现象进行数值研究. 通过求解特定声学度规背景下标量场的径向方程, 计算不同频率下的反射系数、透射系数和霍金辐射功率谱. 数值结果验证了超辐射的存在, 即当入射声波频率低于声学黑洞的特定频率阈值$m \varOmega_{\rm{H}}$时, 反射波被放大. 同时, 计算结果与能量守恒关系一致, 验证了数值方法的可靠性. 关于霍金辐射, 本研究计算了其功率谱随频率的变化. 观察到在超辐射临界频率附近, 霍金辐射功率谱出现显著增强, 这主要是由于玻色-爱因斯坦统计分布函数在包含旋转效应的指数项趋于零时分母接近于零, 以及频率依赖的透射概率共同作用导致的. 随着频率进一步升高, 功率谱呈现出非线性变化, 这反映了频率因子、透射概率以及包含旋转效应的玻色-爱因斯坦统计分布的综合影响. 本工作为理解声学黑洞的量子效应提供了数值支持, 并为未来的理论和实验研究提供了参考.

摘要 +
拓扑边界态因在带隙中的鲁棒性和无损耗的传输特性备受关注, 但在复杂系统中实现其稳定激发仍是一个挑战. 本文提出了一种利用亚对称性保护的边界态与长程非互易耦合系数, 实现具有拓扑选择性的非厄米趋肤效应 (non-Hermitian skin effect, NHSE) 的方法. 该方法能够选择性地对平庸体态施加非厄米趋肤效应, 同时保持拓扑边界态不受影响, 从而实现拓扑模式与体态模式在空间上的有效分离, 并在能带密集的系统中实现鲁棒的边界态激发. 此外, 本文将该模型扩展到二维体系, 实现了角态与体态模式的有效分离. 通过紧束缚模型进行理论预测, 分析了该模型中非厄米效应对能谱和趋肤性质的调控机制, 并利用有限元仿真在光学耦合环中验证了这一机制的可行性, 研究了非厄米趋肤效应的本征态特性, 并实现了拓扑态的鲁棒激发. 该机制将非厄米物理与拓扑光子学相结合, 为提升光子系统中信号的稳定性提供了新的思路与方向.

摘要 +
通道蛋白精确调控生命活动中物质跨膜转运, 为信号传递和能量代谢等复杂功能提供了结构保障. 单分子荧光技术与单通道膜片钳技术偶联对于解析其“结构-动力学-功能”的关联至关重要. 为解决二者联用中细胞内的高荧光背景限制单分子信号采集的难点, 本研究提出了一种选择性局部激发光路, 在活细胞上表面构建可控范围的局域照明场, 实现其中单分子荧光成像与动态追踪. 基于可调照明范围和区域, 达成照明光斑与玻璃电极的亚微米级共定位, 有效获取细胞贴附式单通道电流记录, 及高信噪比的单分子荧光时间轨迹. 本工作建立了一个可用于揭示通道蛋白结构-功能耦联机制的、具有普适性的单分子水平研究框架.

摘要 +
研究了两相重费米子超导体CeRh2As2在不同磁场下的电热输运行为. 零场电阻率显示, CeRh2As2在临界温度Tc = 0.34 K发生超导转变. 在外加磁场为1 T时, 电阻率在T0$ \approx $0.42 K附近出现极小值, 该特征可能源于费米面嵌套引发的能隙部分打开, 标志着体系进入磁有序态, 但在零场条件下未观察到这一现象. 在T0至2 K温区, 体系表现出$ \rho\sim{{T}}^{0.44} $的非费米液体行为, 说明其靠近量子临界点. 当外加磁场达到7 T时, 超导转变被完全压制, 电阻率在低温下恢复费米液体行为. CeRh2As2的零场热导率在Tc附近未观测到显著异常, 这一现象可能与样品较高的剩余电阻率以及伴随超导转变和T0相变发生的载流子浓度下降相关, 需要优化样品的制备从而减小晶格缺陷或化学无序对热输运测量的影响. 施加磁场后, 热导率曲线相较零场小幅上移. 当温度为0.15 K时, 热导率随磁场增大而升高, 随着外场升至5 T以上, 热导率趋于饱和. 在7 T的正常态, 我们发现电阻率和热导率满足Wiedemann-Franz定律, 表明电荷输运与热输运均由同一类准粒子主导, 这与该磁场下电阻率呈现的费米液体行为相吻合.

摘要 +
相互作用量子系统在精密测量领域正受到广泛的关注, 尤其是量子关联态的实现以及相互作用系统的动力学研究, 为量子资源提供了全新的研究方向, 推动了基于相互作用系统的传感技术的深入探索. 然而, 现有研究主要局限于单一物理量的测量, 如何利用相互作用系统实现多物理量的精密测量仍亟待实验验证. 本研究基于超低场条件下强相互作用核自旋系统, 并结合高灵敏的原子磁力计实现信号读出, 成功实现了三维矢量磁场的精密测量, 测量精度达到10–11 T, 方向分辨率高达0.2 rad. 有效克服了传统方法中因外部参考场引入的校准误差和技术噪声的限制. 通过实验上的优化, 基于相互作用的传感器在测量精度上实现了5个数量级的提升, 为开发超高精度的新型量子传感器开辟了全新的技术路径.

摘要 +
量子多体伤痕态的弱遍历性动力学与本征态热化假说相悖, 在淬火动力学中局域可观测量出现周期振荡. 这种现象通常与伤痕态二分纠缠熵的亚体积定律有关. 纠缠熵呈现出异常值, 与能谱主体相分离. 本文使用精确对角化的方法数值模拟了准一维分形子模型中的彩虹伤痕态, 该态由一系列远距离的四体纠缠组成, 依次分布于中心对称的四个格点, 其二分纠缠熵遵循体积定律. 研究发现该态在未与能谱主体分离的情况下, 表现出了弱热化现象. 当引入横场破坏模型的子系统对称性后, 弱热化特性随即消失. 进一步地, 在分形子模型中提出了彩虹伤痕态的制备方案, 通过调制局域的四体交换相互作用和$ \hat{\sigma}^z$门, 从尼尔态出发, 实现了高保真度的态制备. 分析相互作用的强度噪声影响, 该方案表现出一定的鲁棒性. 本文证明了分形子模型中彩虹伤痕态的存在, 为非平衡量子系统中弱热化的研究提供了新的途径.

摘要 +
在离子光钟实验系统中, 离子的运动效应是衡量一套光钟性能的主要指标之一, 是目前限制各类不同离子光钟具有更低不确定度的关键影响因素. 在第一套液氮低温钙离子光钟的基础上(2022 Phys. Rev. Appl. 17 034041 ), 我们研制了新一套液氮钙离子光钟的物理系统, 并对其离子囚禁装置进行了较大改进, 主要包括以下两方面: 通过引入射频电压的主动稳定装置, 将液氮低温钙离子光钟的径向宏运动频率的长期漂移抑制到了小于$1\;\mathrm{kHz}$水平; 通过改进离子阱鞍点位置剩余电压的补偿方案, 进一步将液氮低温钙离子光钟中附加微运动造成的频移抑制至小于$1.0\times10^{-19}$. 这些改进有助于提升离子的冷却效率与提高离子温度的评估精度. 通过对宏运动红蓝边带的测量, 精确评估了Doppler冷却后离子的振动平均声子数, 对应的离子温度为0.78 mK, 接近Doppler冷却极限. 此外, 稳定的宏运动频率为下一步在液氮低温钙离子光钟上实施三维边带冷却创造了良好条件, 也为推动液氮低温钙离子光钟的系统不确定度进一步降低至$10^{-19}$量级打下了基础.

摘要 +
多主元合金概念的提出颠覆了传统物理冶金的理念, 极大地拓展了材料设计空间. 合金相图从热力学角度揭示成分、热力学与结构之间的关系, 对指导材料优化具有重要意义. 传统实验方法测定相图费时耗力, 且面临着测量条件、成分控制、高温高压等因素限制, 系统评估相图和热力学性质困难. 在此工作中, 我们以典型等原子比镍钴铬合金为原型材料, 采用元动力学、动态概率增强采样和扩展系综模拟相结合的方法, 克服原子尺度模拟的时间尺度限制, 系统地绘制了镍钴铬在高温、高压条件下的温度-压力相图, 并计算了不同热力学条件下该材料体心立方晶体与液体相变的自由能面. 基于自由能路径, 量化了晶化和熔化相变过程中, 激活能、激活体积、激活熵与温度、压力的关系, 从而揭示了压力和温度分别通过影响激活体积和激活熵, 进而影响熔化和晶化动力学的物理机制. 该研究为理解多主元合金的热力学与相变动力学提供了理论支持, 探索了其在极端条件下结构稳定性.

摘要 +
低维电子材料与超导材料的复合体系一直是研究介观输运和低维超导特性的重要平台, 其中具有强自旋轨道耦合效应的低维结构与超导宏观量子态结合呈现出丰富的量子现象, 为探索新物性和研制新型拓扑量子器件提供了一个理想的平台. 采用高质量的一维电子材料构筑超导复合器件, 探索受限量子体系与超导界面的量子输运现象和器件调控机制迅速成为研究的前沿和热点. 其中的关键问题在于理解纳米尺度下低维体系与超导界面的特征散射机制和量子输运过程, 研究电荷态与拓扑局域态的耦合机制, 实现对拓扑态本征输运特性的探测, 在此基础上为研制新型超导纳电子器件和拓扑量子器件探索新原理和新方法. 由于多种能量尺度和束缚态的竞争, 介观尺度下的超导复合结构在器件物理、结构设计以及测量方案上都存在前所未有的挑战. 本文回顾了基于一维电子体系的超导复合器件的近期进展, 聚焦在以半导体纳米线和碳纳米管为代表的实验体系, 简要介绍了从材料和器件物理, 到输运测量的主要现象和实验挑战. 最后本文对一维体系拓扑量子器件的研制和输运研究进行了总结和展望.
- 1
- 2
- 3
- 4
- 5
- ...
- 13
- 14