搜索

x
专题

更多 
领域
文章类型

单量子态探测及其相互作用

编者按:

单量子态的制备、操控和精密测量,将推动以量子力学为核心的当代物理学的发展.近年来,随着实验精度和技术控制能力的不断提高,人们可以制备单量子态,对其进行操控,并直接探测其物理特性,这些进展还将促进其他与物理学交叉的学科,如信息、材料、能源和化学等交叉学科的发展,对包括量子计算、量子通信和量子精密测量等量子信息处理具有至关重要的作用.


基金委设立了相关重大研究计划项目,旨在通过对单量子态及其量子效应的研究,直接对微观单粒子量子态、宏观量子态进行高精度的精密探测,理论和实验相结合开展研究,理解和掌握量子态的特性和量子过程的基本规律,发展新的量子器件制备技术和量子探测手段,提升我国基础研究的水平,解决与我国信息和能源重大需求相关的科学问题,实现技术跨越式发展.


该重大研究计划实施近10年来,取得了丰硕成果.为向广大科研工作者和科研管理部门介绍重大研究计划所取得的成果,特在《物理学报》组织“单量子态探测及其相互作用”专题,刊登关于重大研究计划所取得的部分成果的综述.我们很高兴地看到,许多年轻科研工作者随着项目的执行成长起来,成为领域的骨干和杰出研究人员.本专题不仅是对项目成果的总结展示,而且将激励更多的年轻人投身相关领域的研究,促进领域的可持续发展.

客座编辑:中国科学院物理研究所 解思深
物理学报. 2018, 67(22).
冷原子系综内单集体激发态的相干操纵
安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟
2018, 67 (22): 224203. doi: 10.7498/aps.67.20181183
摘要 +
原子系综内部分原子发生相干态转移后所处量子态被称为集体激发态.如果激发数目在单原子量级则被称为单激发态.在量子存储过程中,单光子以单激发态的形式在原子系综内进行存储.因此,研究单激发态的制备、演化、转化、干涉等过程是量子存储及其应用研究的关键.本文总结了近年来作者所在研究团队针对冷原子系综体系在此研究方向取得的若干成果.主要包括采用动量模式调控、三维光晶格等手段抑制单激发态的退相干,采用环形腔增强原子至光子的转化效率,发展基于拉曼光的单激发态相干转移技术,利用单量子态不同模式间干涉制备光与原子纠缠,利用里德伯阻塞机制提升纠缠制备效率等.此外,简要回顾了基于多个单激发态的量子中继及量子网络实验.
核磁共振量子信息处理研究的新进展
孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁
2018, 67 (22): 220301. doi: 10.7498/aps.67.20180754
摘要 +
过去的二十年中,量子信息相关研究取得了显著的进展,重要的理论和实验工作不断涌现.与其他量子信息处理系统相比,基于自旋动力学的核磁共振系统,不仅具有丰富而且成熟的控制技术,还拥有相干时间长、脉冲操控精确、保真度高等优点.这也是核磁共振体量子系统能够精确操控多达12比特的量子系统的原因.因此,核磁共振量子处理器在量子信息领域一直扮演着重要角色.本文介绍核磁共振量子计算的基本原理和一些新研究进展.研究的新进展主要包括量子噪声注入技术、量子机器学习在核磁共振平台上的实验演示、高能物理和拓扑序的量子模拟以及核磁共振量子云平台等.最后讨论了液态核磁共振的发展前景和发展瓶颈,并对未来发展方向提出展望.
半导体上转换单光子探测技术研究进展
白鹏, 张月蘅, 沈文忠
2018, 67 (22): 221401. doi: 10.7498/aps.67.20180618
摘要 +
近年来,量子通信技术取得了卓越的进步和发展,而作为接收端的单光子探测器在其通信系统中则起着至关重要的作用.本文聚焦于当前主流的半导体单光子探测器,就其器件原理、工作模式、优势和劣势等方面进行了相关评述.在此基础上,着重介绍了本课题组所提出的一种新型半导体近红外上转换单光子探测技术(USPD)的研究进展.从USPD的器件基本原理、器件结构、性能指标等方面阐述了其优越性和可行性,并给出了USPD最新的空间光耦合实验结果.半导体上转换单光子探测技术的关键特性在于它不是采用InP雪崩层结构实现信号的放大,而是利用成熟的硅单光子雪崩二极管(Si-SPAD)器件来实现信号的放大和采集,从而规避InP结构在暗计数率和后脉冲效应方面的问题.USPD利用半导体材料,通过外加电场将近红外光子上转换为短波近红外或者可见光子,再用商用Si-SPAD进行探测的方法,也为我们提供了一种单光子探测的新思路,打开了另一扇单光子探测的窗口.
半导体自组织量子点量子发光机理与器件
尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川
2018, 67 (22): 227801. doi: 10.7498/aps.67.20180594
摘要 +
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.
飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究
王艳梅, 唐颖, 张嵩, 龙金友, 张冰
2018, 67 (22): 227802. doi: 10.7498/aps.67.20181334
摘要 +
分子量子态的研究,特别是分子激发态演化过程的研究不仅可以了解分子量子态的基本特性和量子态之间的相互作用,而且可以了解化学反应过程和反应通道间的相互作用.飞秒时间分辨质谱和光电子影像是将飞秒抽运-探测分别与飞行时间质谱和光电子影像相结合的超快谱学方法,为实现分子内部量子态探测,研究分子量子态相互作用及超快动力学过程提供了强有力的工具,可以在飞秒时间尺度下研究单分子反应过程中的光物理或光化学机理.本文详细介绍了飞秒时间分辨质谱和光电子影像的技术原理,并结合本课题组的工作,展示了这两种方法在量子态探测及相互作用研究领域,特别是激发态电子退相、波包演化、能量转移、分子光解动力学以及分子激发态结构动力学研究中的广泛应用.最后,对该技术的发展前景以及进一步的研究工作和方向进行了展望.
单分子尺度的光量子态调控与单分子电致发光研究
张尧, 张杨, 董振超
2018, 67 (22): 223301. doi: 10.7498/aps.67.20181718
摘要 +
分子尺度上的光电相互作用研究可以为发展未来信息和能源技术提供科学基础.扫描隧道显微镜不仅可以用来观察和操纵纳米世界中的原子和分子,而且其高度局域化的隧穿电流还可以被用来激发隧道结中的分子,使之发光,以研究局域场下的分子光电特性.本文综述了中国科学技术大学单分子光电研究组近期在锌酞菁分子电致发光方面取得的科学进展,包括:1)利用有效的电子脱耦合与纳腔等离激元调控技术,实现了隧穿电子激发下的单个锌酞菁分子的电致荧光,并通过发展相关的光子发射统计测量方法,表征了单个分子在隧穿电子激发下的电致荧光具有单光子发射特性;2)发展了具有亚纳米空间分辨的荧光光谱成像技术,实现了对酞菁分子间相干偶极相互作用特征的实空间观察;3)对分子与纳腔等离激元之间的相干耦合作用进行了亚纳米精度的操控,在单分子水平上观察到了法诺共振和兰姆位移效应.这些研究结果不仅为研发基于有机分子的电泵纳米光源与单光子光源等分子光电器件提供了新的思路,而且为在单分子尺度上研究分子光电特性、分子间能量转移以及场与物质之间的相互作用规律等提供了新的表征方法.
新型超导量子比特及量子物理问题的研究
赵士平, 刘玉玺, 郑东宁
2018, 67 (22): 228501. doi: 10.7498/aps.67.20180845
摘要 +
近年来,超导量子计算的研究有了很大的进展.本文首先介绍了nSQUID新型超导量子比特的制备和研究进展,包括器件的平面多层膜制备工艺和量子相干性的研究.这类器件在量子态的传输速度和二维势系统的基础物理问题研究方面有着很大的优越性.其次,国际上新近发展的平面形式的transmon和Xmon超导量子比特具有更长的量子相干时间,在器件的设计和耦合方面也有相当的灵活性.本文介绍了我们和浙江大学与中国科学技术大学等单位合作逐步完善的这种形式的Xmon器件的制备工艺、制备出的多种耦合量子比特芯片,以及参与合作,在国际上首次完成的多达10个超导量子比特的量子态纠缠、线性方程组量子算法的实现和多体局域态等固体物理问题的量子模拟.最后介绍了基于这些超导量子比特器件开展的大量的量子物理、非线性物理和量子光学方面的研究,包括在Autler-Townes劈裂、电磁诱导透明、受激拉曼绝热通道、循环跃迁和关联激光等方面形成的一整套系统和独特的研究成果.
利用超导量子电路模拟拓扑量子材料
喻祥敏, 谭新生, 于海峰, 于扬
2018, 67 (22): 220302. doi: 10.7498/aps.67.20181857
摘要 +
近年来,探索新的拓扑量子材料、研究拓扑材料的新奇物理性质成为凝聚态物理领域的一个热点.但是,由于合成、测量等手段的限制,人们难以在真实材料中实现和观测很多理论预言的材料及其物理性质,促使量子模拟日益成为研究量子多体系统的一个重要手段.作为全固态器件,超导量子电路是一个在扩展性、集成性、调控性上都具有巨大优势的人工量子系统,是实现量子模拟的重要方案.本文总结了利用超导量子电路对时间-空间反演对称性保护的拓扑半金属、Hopf-link半金属和Maxwell半金属等拓扑材料的量子模拟,显示出超导量子电路在模拟凝聚态物理系统方面具有广阔前景.
量子点操控的光子探测和圆偏振光子发射
李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫
2018, 67 (22): 227301. doi: 10.7498/aps.67.20182049
摘要 +
半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.
复杂氧化物中电子相分离的量子调控
王文彬, 朱银燕, 殷立峰, 沈健
2018, 67 (22): 227502. doi: 10.7498/aps.67.20182007
摘要 +
复杂氧化物可以呈现出高温超导、庞磁阻以及多铁效应等诸多新奇的物理现象.这类材料中的电荷/自旋/轨道和晶格自由度之间的强耦合相互作用,可以导致多种相互竞争且能量非常接近的电子态的空间共存,这就是电子相分离现象.如果可以将材料的空间尺寸缩小到电子相分离的特征长度,其物理性质甚至电子关联作用本身都会发生根本的变化,从而有可能实现复杂氧化物中的量子调控.本文综述了我们课题组在过去几年中针对复杂氧化物中电子相分离的量子调控取得的进展,内容包括:发现了锰氧化物边缘电子态,通过氧化物微纳加工技术,实现了量子态空间分布的调控,提高了庞磁阻锰氧化物的临界温度;研究了当材料空间尺度小于其电子相分离特征尺度时电子相分离的表现,确定了在电子相分离消失以后体系的磁结构;通过超晶格生长技术调控了材料中的掺杂有序度,对锰氧化物中大尺度的电子相分离的物理机理从实验上给出了解释.