搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体上转换单光子探测技术研究进展

白鹏 张月蘅 沈文忠

引用本文:
Citation:

半导体上转换单光子探测技术研究进展

白鹏, 张月蘅, 沈文忠

Research progress of semiconductor up-conversion single photon detection technology

Bai Peng, Zhang Yue-Heng, Shen Wen-Zhong
PDF
导出引用
  • 近年来,量子通信技术取得了卓越的进步和发展,而作为接收端的单光子探测器在其通信系统中则起着至关重要的作用.本文聚焦于当前主流的半导体单光子探测器,就其器件原理、工作模式、优势和劣势等方面进行了相关评述.在此基础上,着重介绍了本课题组所提出的一种新型半导体近红外上转换单光子探测技术(USPD)的研究进展.从USPD的器件基本原理、器件结构、性能指标等方面阐述了其优越性和可行性,并给出了USPD最新的空间光耦合实验结果.半导体上转换单光子探测技术的关键特性在于它不是采用InP雪崩层结构实现信号的放大,而是利用成熟的硅单光子雪崩二极管(Si-SPAD)器件来实现信号的放大和采集,从而规避InP结构在暗计数率和后脉冲效应方面的问题.USPD利用半导体材料,通过外加电场将近红外光子上转换为短波近红外或者可见光子,再用商用Si-SPAD进行探测的方法,也为我们提供了一种单光子探测的新思路,打开了另一扇单光子探测的窗口.
    Quantum communication technology has achieved remarkable progress and development in recent years, and the single photon detector, as the receiving terminal, plays a vital role in communication systems. In this paper, we focus on the current mainstream semiconductor-based single photon detectors and review their device principle, operating mode, advantages and disadvantages. Besides, the research progress of a novel semiconductor near-infrared single photon detection technology (USPD) is introduced. The feasibility and superiority of the USPD device are demonstrated from the basic principle, device structure and key performance indicators of USPD, and the latest spatial optical coupling experiment results of the USPD are also given. The design principle of the USPD device is to utilize Si multiplication layer of the Si SPAD as a multiplication layer instead of InP in conventional InGaAs-SPAD. The Si-SPAD has a much lower dark count rate and afterpulsing effect because of high-quality material of Si. Such a characteristic design of USPD can suppress the afterpulsing probability to the same level as that of the Si-SPAD and enables it to operate in the free-running regime without sacrificing photon detection efficiency. For the same reason, the dark count rate (DCR) of USPD is also very low. The operating mechanism of USPD is to convert the infrared photons into near-infrared or visible photons and the emitted near-infrared photons can be detected by a Si SPAD, which provides us with a new idea for single photon detection.
      通信作者: 张月蘅, yuehzhang@sjtu.edu.cn
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91221201)资助的课题.
      Corresponding author: Zhang Yue-Heng, yuehzhang@sjtu.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 91221201).
    [1]

    Eisaman M D, Fan J, Migdall A, Polyakov S V 2011 Rev. Sci. Instrum. 82 202

    [2]

    Hadfield R H 2009 Nat. Photon. 3 696

    [3]

    Fujiwara M, Tanaka A, Takahashi S, Yoshino K, Nambu Y, Tajima A, Miki S, Yamashita T, Wang Z, Tomita A, Sasaki M 2011 Opt. Express 19 19562

    [4]

    Ma L, Slattery O, Mink A 2009 Quantum Communications and Quantum Imaging Naples, Italy, October 26-30, 2009 p7465

    [5]

    Diamanti E, Takesue H, Honjo T, Inoue K, Yamamoto Y 2005 Phys. Rev. A 72 052311

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [7]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43

    [8]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70

    [9]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795

    [10]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [11]

    Zhang J, Itzler M A, Zbinden H, Pan J W 2015 Light-Sci. Appl. 4 286

    [12]

    Albota M A, Wong F N 2004 Opt. Lett. 29 1449

    [13]

    Vandevender A P, Kwiat P G 2004 J. Mod. Opt. 51 1433

    [14]

    Gu X R, Huang K, Li Y, Pan H F, Wu E, Zeng H P 2010 Appl. Phys. Lett. 96 131111

    [15]

    Huang K, Gu X R, Ren M, Jian Y, Pan H F, Wu G, Wu E, Zeng H P 2011 Opt. Lett. 36 1722

    [16]

    Huang K, Gu X R, Pan H F, Wu E, Zeng H P 2012 Appl. Phys. Lett. 100 151102

    [17]

    Pan H F, Wu E, Dong H, Zeng H P 2008 Phys. Rev. A 77 33815

    [18]

    Langrock C, Diamanti E, Roussev R V, Yamamoto Y, Fejer M M, Takesue H 2005 Opt. Lett. 30 1725

    [19]

    Shentu G L, Pelc J S, Wang X D, Sun Q C, Zheng M Y, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 13986

    [20]

    Renker D, Lorenz E 2009 J. Instrum. 4 4004

    [21]

    Thomas O, Yuan Z L, Dynes J F, Sharpe A W, Shields A J 2010 Appl. Phys. Lett. 97 031102

    [22]

    Comandar L C, Fröhlich B, Dynes J F, Sharpe A W, Lucamarini M, Yuan Z L, Penty R V, Shields A J 2015 J. Appl. Phys. 117 083109

    [23]

    Korzh B, Walenta N, Lunghi T, Gisin N, Zbinden H 2014 Appl. Phys. Lett. 104 145

    [24]

    Lunghi T, Barreiro C, Guinnard O, Houlmann R, Jiang X, Itzler M A, Zbinden H 2012 J. Mod. Opt. 59 1481

    [25]

    Hawkins A R, Reynolds T E, England D R, Babic D I, Mondry M J, Streubel K, Bowers J E 1996 Appl. Phys. Lett. 68 3692

    [26]

    Kang Y, Mages P, Clawson A R, Lau S S, Lo Y H, Yu P K L, Pauchard A, Zhu Z, Zhou Y 2001 Appl. Phys. Lett. 79 970

    [27]

    Kang Y, Lo Y H, Bitter M, Kristjansson S, Pan Z, Pauchard A 2004 Appl. Phys. Lett. 85 1668

    [28]

    Allard L B, Liu H C, Buchanan M, Wasilewski Z R 1997 Appl. Phys. Lett. 70 2784

    [29]

    Luo H, Ban D, Liu H C, SpringThorpe A J, Wasilewski Z R, Buchanan M, Glew R 2004 J. Vac. Sci. Technol. A 22 788

    [30]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Buchanan M 2005 IEEE Photon. Tech. L. 17 1477

    [31]

    Chen J, Tao J, Ban D, Helander M G, Wang Z, Qiu J, Lu Z 2012 Adv. Mater. 24 3138

    [32]

    Liu H C, Allard L B, Buchanan M, Wasilewski Z R 1997 Electron. Lett. 33 379

    [33]

    Liu H C, Li J, Wasilewski Z R, Buchanan M 1995 Electron. Lett. 31 832

    [34]

    Ban D, Luo H, Liu H C, Wasilewski Z R, SpringThorpe A J, Glew R, Buchanan M 2004 J. Appl. Phys. 96 5243

    [35]

    Bai P, Zhang Y H, Shen W Z 2017 Sci. Rep. 7 15341

    [36]

    Balkanski M, Wallis R F 2000 Semiconductor Physics and Applications (Oxford: Oxford University Press) pp26-36

    [37]

    Cova S, Longoni A, Andreoni A, Cubeddu R 1983 IEEE J. Quantum Elect. 19 630

    [38]

    Renker D 2006 Nucl. Instrum. Meth. A 567 48

    [39]

    Cova S, Ghioni M, Zappa F, Rech I, Gulinatti A 2006 In Advanced Photon Counting Techniques Boston, USA, October 3-4 2006 p63720

    [40]

    Savuskan V, Javitt M, Visokolov G, Brouk I, Nemirovsky Y 2013 IEEE Sens. J. 13 2322

    [41]

    Cova S, Ghioni M, Lotito A, Rech I, Zappa F 2004 J. Mod. Opt. 51 1267

    [42]

    Michalet X, Colyer R A, Scalia G, Ingargiola A, Lin R, Millaud J E, Weiss S, Siegmund O H W, Tremsin A S, Vallerga J V, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni F, Cova S 2013 Philos. T. R. Soc. B 368 20120035

    [43]

    Ghioni M, Gulinatti A, Rech I, Zappa F, Cova S 2007 IEEE J. Sel. Top. Quant. 13 852

    [44]

    Michalet X, Ingargiola A, Colyer R A, Scalia G, Weiss S, Maccagnani P, Gulinatti A, Rech I, Ghioni M 2014 IEEE J. Sel. Top. Quant. 20 248

    [45]

    Felekyan S, Khnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel C A M 2005 Rev. Sci. Instrum. 76 968

    [46]

    Rech I, Labanca I, Ghioni M, Cova S 2006 Rev. Sci. Instrum. 77 1524

    [47]

    Dautet H, Deschamps P, Dion B, MacGregor A D, MacSween D, McIntyre R J, Trottie C, Webb P P 1993 Appl. Opt. 32 3894

    [48]

    Itzler M A, Ben-Michael R, Hsu C F, Slomkowski K, Tosi A, Cova S, Zappa F, Ispasoiu R 2007 J. Mod. Opt. 54 283

    [49]

    Tosi A, Mora A D, Zappa F, Cova S 2009 J. Mod. Opt. 56 299

    [50]

    Rowe M A, Gansen E J, Greene M, Hadfield R H, Harvey T E, Su M Y, Nam S W, Mirin R P, Rosenberg D 2006 Appl. Phys. Lett. 89 253505

    [51]

    Gansen E J, Rowe M A, Greene M B, Rosenberg D, Harvey T E, Su M Y, Nam S W, Hadfield R H, Mirin R P 2007 Nat. Photon. 1 585

    [52]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Paltiel Y, Raizman A, Sher A 2005 Appl. Phys. Lett. 86 151

    [53]

    Li B, L Q Q, Cui R, Yin W H, Yang X H, Han Q 2015 IEEE Photon. Tech. L. 27 34137

    [54]

    Wang X D, Hu W D, Chen X S, Lu W, Tang H J, Li T, Gong H M 2008 IEEE NUSOD 40 14

    [55]

    Shi M, Shao X M, Tang H J, Li T, Huang X, Cao G Q, Wang R, Li P, Li X, Gong H M 2016 J. Infrared Millim. Wave 35 47 (in Chinese) [石铭, 邵秀梅, 唐恒敬, 李淘, 黄星, 曹高奇, 王瑞, 李平, 李雪, 龚海梅 2016 红外与毫米波学报 35 47]

    [56]

    Li X, Tang H J, Li T, Wei P, Gong H M, Fang J X 2013 International Symposium on Photoelectronic Detection & Imaging Beijing, China, June 2-6, 2013 p890703

    [57]

    Cao G, Tang H J, Shao X, Wang R, Li X, Gong H M 2015 AOPC 2015 Optical and Optoelectronic Sensing and Imaging Technology Beijing, China, May 7-9, 2015 p967411

    [58]

    Li X, Gong H M, Fang J, Shao X, Tang H J, Huang S, Li T, Huang Z C 2016 Infrared Phys. Techn. 80 112

    [59]

    Fu Z L, Gu L L, Guo X G, Tan Z Y, Wan W J, Zhou T, Shao D X, Zhang R, Cao J C 2016 Sci. Rep. 6 25383

    [60]

    Tien P K, Ulrich R 1970 J. Opt. Soc. Am. 60 1325

    [61]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497

    [62]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192

    [63]

    Warburton R E, Itzler M A, Buller G S 2009 Electron. Lett. 45 996

    [64]

    Warburton R E, Itzler M A, Buller G S 2009 Appl. Phys. Lett. 94 397

    [65]

    Korzh B, Zbinden H 2014 In Advanced Photon Counting Techniques Orlando, United States, April 7-8, 2014 p91140

    [66]

    Xu L, Wu E, Gu X, Jian Y, Wu G, Zeng H P 2009 Appl. Phys. Lett. 94 1396

    [67]

    Ma L, Bienfang J C, Slattery O, Tang X 2011 Opt. Express 19 5470

    [68]

    Shentu G L, Sun Q C, Jiang X, Wang X D, Pelc J S, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 24674

    [69]

    Chiu S, Scott A 2000 QWIP-LED/CCD Coupling Study (Ottawa: Defence Research Establishment) pp39-41

    [70]

    Chu X, Guan M, Li L, Zhang Y, Zhang F, Li Y, Zhu Z, Wang B, Zeng Y 2012 ACS Appl. Mater. Inter. 4 4976

    [71]

    Yu H, Kim D, Lee J, Baek S, Lee J, Singh R, Lee J, Singh R, So F 2016 Nat. Photon. 10 129

  • [1]

    Eisaman M D, Fan J, Migdall A, Polyakov S V 2011 Rev. Sci. Instrum. 82 202

    [2]

    Hadfield R H 2009 Nat. Photon. 3 696

    [3]

    Fujiwara M, Tanaka A, Takahashi S, Yoshino K, Nambu Y, Tajima A, Miki S, Yamashita T, Wang Z, Tomita A, Sasaki M 2011 Opt. Express 19 19562

    [4]

    Ma L, Slattery O, Mink A 2009 Quantum Communications and Quantum Imaging Naples, Italy, October 26-30, 2009 p7465

    [5]

    Diamanti E, Takesue H, Honjo T, Inoue K, Yamamoto Y 2005 Phys. Rev. A 72 052311

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [7]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43

    [8]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70

    [9]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795

    [10]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [11]

    Zhang J, Itzler M A, Zbinden H, Pan J W 2015 Light-Sci. Appl. 4 286

    [12]

    Albota M A, Wong F N 2004 Opt. Lett. 29 1449

    [13]

    Vandevender A P, Kwiat P G 2004 J. Mod. Opt. 51 1433

    [14]

    Gu X R, Huang K, Li Y, Pan H F, Wu E, Zeng H P 2010 Appl. Phys. Lett. 96 131111

    [15]

    Huang K, Gu X R, Ren M, Jian Y, Pan H F, Wu G, Wu E, Zeng H P 2011 Opt. Lett. 36 1722

    [16]

    Huang K, Gu X R, Pan H F, Wu E, Zeng H P 2012 Appl. Phys. Lett. 100 151102

    [17]

    Pan H F, Wu E, Dong H, Zeng H P 2008 Phys. Rev. A 77 33815

    [18]

    Langrock C, Diamanti E, Roussev R V, Yamamoto Y, Fejer M M, Takesue H 2005 Opt. Lett. 30 1725

    [19]

    Shentu G L, Pelc J S, Wang X D, Sun Q C, Zheng M Y, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 13986

    [20]

    Renker D, Lorenz E 2009 J. Instrum. 4 4004

    [21]

    Thomas O, Yuan Z L, Dynes J F, Sharpe A W, Shields A J 2010 Appl. Phys. Lett. 97 031102

    [22]

    Comandar L C, Fröhlich B, Dynes J F, Sharpe A W, Lucamarini M, Yuan Z L, Penty R V, Shields A J 2015 J. Appl. Phys. 117 083109

    [23]

    Korzh B, Walenta N, Lunghi T, Gisin N, Zbinden H 2014 Appl. Phys. Lett. 104 145

    [24]

    Lunghi T, Barreiro C, Guinnard O, Houlmann R, Jiang X, Itzler M A, Zbinden H 2012 J. Mod. Opt. 59 1481

    [25]

    Hawkins A R, Reynolds T E, England D R, Babic D I, Mondry M J, Streubel K, Bowers J E 1996 Appl. Phys. Lett. 68 3692

    [26]

    Kang Y, Mages P, Clawson A R, Lau S S, Lo Y H, Yu P K L, Pauchard A, Zhu Z, Zhou Y 2001 Appl. Phys. Lett. 79 970

    [27]

    Kang Y, Lo Y H, Bitter M, Kristjansson S, Pan Z, Pauchard A 2004 Appl. Phys. Lett. 85 1668

    [28]

    Allard L B, Liu H C, Buchanan M, Wasilewski Z R 1997 Appl. Phys. Lett. 70 2784

    [29]

    Luo H, Ban D, Liu H C, SpringThorpe A J, Wasilewski Z R, Buchanan M, Glew R 2004 J. Vac. Sci. Technol. A 22 788

    [30]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Buchanan M 2005 IEEE Photon. Tech. L. 17 1477

    [31]

    Chen J, Tao J, Ban D, Helander M G, Wang Z, Qiu J, Lu Z 2012 Adv. Mater. 24 3138

    [32]

    Liu H C, Allard L B, Buchanan M, Wasilewski Z R 1997 Electron. Lett. 33 379

    [33]

    Liu H C, Li J, Wasilewski Z R, Buchanan M 1995 Electron. Lett. 31 832

    [34]

    Ban D, Luo H, Liu H C, Wasilewski Z R, SpringThorpe A J, Glew R, Buchanan M 2004 J. Appl. Phys. 96 5243

    [35]

    Bai P, Zhang Y H, Shen W Z 2017 Sci. Rep. 7 15341

    [36]

    Balkanski M, Wallis R F 2000 Semiconductor Physics and Applications (Oxford: Oxford University Press) pp26-36

    [37]

    Cova S, Longoni A, Andreoni A, Cubeddu R 1983 IEEE J. Quantum Elect. 19 630

    [38]

    Renker D 2006 Nucl. Instrum. Meth. A 567 48

    [39]

    Cova S, Ghioni M, Zappa F, Rech I, Gulinatti A 2006 In Advanced Photon Counting Techniques Boston, USA, October 3-4 2006 p63720

    [40]

    Savuskan V, Javitt M, Visokolov G, Brouk I, Nemirovsky Y 2013 IEEE Sens. J. 13 2322

    [41]

    Cova S, Ghioni M, Lotito A, Rech I, Zappa F 2004 J. Mod. Opt. 51 1267

    [42]

    Michalet X, Colyer R A, Scalia G, Ingargiola A, Lin R, Millaud J E, Weiss S, Siegmund O H W, Tremsin A S, Vallerga J V, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni F, Cova S 2013 Philos. T. R. Soc. B 368 20120035

    [43]

    Ghioni M, Gulinatti A, Rech I, Zappa F, Cova S 2007 IEEE J. Sel. Top. Quant. 13 852

    [44]

    Michalet X, Ingargiola A, Colyer R A, Scalia G, Weiss S, Maccagnani P, Gulinatti A, Rech I, Ghioni M 2014 IEEE J. Sel. Top. Quant. 20 248

    [45]

    Felekyan S, Khnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel C A M 2005 Rev. Sci. Instrum. 76 968

    [46]

    Rech I, Labanca I, Ghioni M, Cova S 2006 Rev. Sci. Instrum. 77 1524

    [47]

    Dautet H, Deschamps P, Dion B, MacGregor A D, MacSween D, McIntyre R J, Trottie C, Webb P P 1993 Appl. Opt. 32 3894

    [48]

    Itzler M A, Ben-Michael R, Hsu C F, Slomkowski K, Tosi A, Cova S, Zappa F, Ispasoiu R 2007 J. Mod. Opt. 54 283

    [49]

    Tosi A, Mora A D, Zappa F, Cova S 2009 J. Mod. Opt. 56 299

    [50]

    Rowe M A, Gansen E J, Greene M, Hadfield R H, Harvey T E, Su M Y, Nam S W, Mirin R P, Rosenberg D 2006 Appl. Phys. Lett. 89 253505

    [51]

    Gansen E J, Rowe M A, Greene M B, Rosenberg D, Harvey T E, Su M Y, Nam S W, Hadfield R H, Mirin R P 2007 Nat. Photon. 1 585

    [52]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Paltiel Y, Raizman A, Sher A 2005 Appl. Phys. Lett. 86 151

    [53]

    Li B, L Q Q, Cui R, Yin W H, Yang X H, Han Q 2015 IEEE Photon. Tech. L. 27 34137

    [54]

    Wang X D, Hu W D, Chen X S, Lu W, Tang H J, Li T, Gong H M 2008 IEEE NUSOD 40 14

    [55]

    Shi M, Shao X M, Tang H J, Li T, Huang X, Cao G Q, Wang R, Li P, Li X, Gong H M 2016 J. Infrared Millim. Wave 35 47 (in Chinese) [石铭, 邵秀梅, 唐恒敬, 李淘, 黄星, 曹高奇, 王瑞, 李平, 李雪, 龚海梅 2016 红外与毫米波学报 35 47]

    [56]

    Li X, Tang H J, Li T, Wei P, Gong H M, Fang J X 2013 International Symposium on Photoelectronic Detection & Imaging Beijing, China, June 2-6, 2013 p890703

    [57]

    Cao G, Tang H J, Shao X, Wang R, Li X, Gong H M 2015 AOPC 2015 Optical and Optoelectronic Sensing and Imaging Technology Beijing, China, May 7-9, 2015 p967411

    [58]

    Li X, Gong H M, Fang J, Shao X, Tang H J, Huang S, Li T, Huang Z C 2016 Infrared Phys. Techn. 80 112

    [59]

    Fu Z L, Gu L L, Guo X G, Tan Z Y, Wan W J, Zhou T, Shao D X, Zhang R, Cao J C 2016 Sci. Rep. 6 25383

    [60]

    Tien P K, Ulrich R 1970 J. Opt. Soc. Am. 60 1325

    [61]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497

    [62]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192

    [63]

    Warburton R E, Itzler M A, Buller G S 2009 Electron. Lett. 45 996

    [64]

    Warburton R E, Itzler M A, Buller G S 2009 Appl. Phys. Lett. 94 397

    [65]

    Korzh B, Zbinden H 2014 In Advanced Photon Counting Techniques Orlando, United States, April 7-8, 2014 p91140

    [66]

    Xu L, Wu E, Gu X, Jian Y, Wu G, Zeng H P 2009 Appl. Phys. Lett. 94 1396

    [67]

    Ma L, Bienfang J C, Slattery O, Tang X 2011 Opt. Express 19 5470

    [68]

    Shentu G L, Sun Q C, Jiang X, Wang X D, Pelc J S, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 24674

    [69]

    Chiu S, Scott A 2000 QWIP-LED/CCD Coupling Study (Ottawa: Defence Research Establishment) pp39-41

    [70]

    Chu X, Guan M, Li L, Zhang Y, Zhang F, Li Y, Zhu Z, Wang B, Zeng Y 2012 ACS Appl. Mater. Inter. 4 4976

    [71]

    Yu H, Kim D, Lee J, Baek S, Lee J, Singh R, Lee J, Singh R, So F 2016 Nat. Photon. 10 129

  • [1] 廖晨, 姚宁, 唐路平, 施伟华, 孙少凌, 杨浩然. 基于硒化银量子点的近红外自组装激光器. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231457
    [2] 廖晨, 姚宁, 唐路平, 施伟华, 孙少凌, 杨浩然. 基于Ag2Se量子点的近红外自组装激光器. 物理学报, 2023, 72(22): 224204. doi: 10.7498/aps.72.20231457
    [3] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [4] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案. 物理学报, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [6] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [7] 高当丽, 李蓝星, 冯小娟, 种波, 辛红, 赵瑾, 张翔宇. Yb浓度对功率依赖的上转换荧光色彩的敏感度调控. 物理学报, 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [8] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [9] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [10] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [11] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [12] 潘成龙, 刘红利, 郭芸, 景姝, 孙静, 周禾丰, 王华. BaMgF4:Er3+, Yb3+上转换纳米晶的合成及其发光性能研究. 物理学报, 2014, 63(15): 154211. doi: 10.7498/aps.63.154211
    [13] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [14] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [15] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议. 物理学报, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [16] 董力强, 黄世华, 温红宇, 杨艳民, 王大伟, 段晓霞. Er3+-Yb3+共掺碲酸盐玻璃上转换绿光激发过程的研究. 物理学报, 2009, 58(12): 8617-8622. doi: 10.7498/aps.58.8617
    [17] 董力强, 黄世华, 贾晓霞, 陈宝玖. 方波激发下Er3+上转换绿光发光动力学过程的研究. 物理学报, 2009, 58(3): 2061-2066. doi: 10.7498/aps.58.2061
    [18] 李成仁, 明成国, 李淑凤, 丁建华, 王宝成, 张 丽. 镱铒共掺Al2O3薄膜上转换机理及其温度特性. 物理学报, 2008, 57(10): 6604-6608. doi: 10.7498/aps.57.6604
    [19] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究. 物理学报, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [20] 吴长锋, 秦伟平, 秦冠仕, 黄世华, 张继森, 赵 丹, 吕少哲, 林海燕, 刘晃清. TiO2∶Mo体系的光子雪崩上转换. 物理学报, 2003, 52(6): 1540-1544. doi: 10.7498/aps.52.1540
计量
  • 文章访问数:  8933
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-08
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-11-20

/

返回文章
返回