搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型超导量子比特及量子物理问题的研究

赵士平 刘玉玺 郑东宁

引用本文:
Citation:

新型超导量子比特及量子物理问题的研究

赵士平, 刘玉玺, 郑东宁

Novel superconducting qubits and quantum physics

Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning
PDF
导出引用
  • 近年来,超导量子计算的研究有了很大的进展.本文首先介绍了nSQUID新型超导量子比特的制备和研究进展,包括器件的平面多层膜制备工艺和量子相干性的研究.这类器件在量子态的传输速度和二维势系统的基础物理问题研究方面有着很大的优越性.其次,国际上新近发展的平面形式的transmon和Xmon超导量子比特具有更长的量子相干时间,在器件的设计和耦合方面也有相当的灵活性.本文介绍了我们和浙江大学与中国科学技术大学等单位合作逐步完善的这种形式的Xmon器件的制备工艺、制备出的多种耦合量子比特芯片,以及参与合作,在国际上首次完成的多达10个超导量子比特的量子态纠缠、线性方程组量子算法的实现和多体局域态等固体物理问题的量子模拟.最后介绍了基于这些超导量子比特器件开展的大量的量子物理、非线性物理和量子光学方面的研究,包括在Autler-Townes劈裂、电磁诱导透明、受激拉曼绝热通道、循环跃迁和关联激光等方面形成的一整套系统和独特的研究成果.
    In the past years, superconducting quantum computation has received much attention and significant progress of the device design and fabrication has been made, which leads qubit coherence times to be improved greatly. Recently, we have successfully designed, fabricated, and tested the superconducting qubits based on the negative-inductance superconducting quantum interference devices (nSQUIDs), which are expected to have the advantages for the fast quantum information transfer and macroscopic quantum phenomenon study with a two-dimensional potential landscape. Their quantum coherence and basic physical properties have been demonstrated and systematically investigated. On the other hand, a new type of superconducting qubit, called transmon and Xmon qubit, has been developed in the meantime by the international community, whose coherence time has been gradually increased to the present scale of tens of microseconds. These devices are demonstrated to have many advantages in the sample design and fabrication, and multi-qubit coupling and manipulation. We have also studied this type of superconducting qubit. In collaboration with Zhejiang University and the University of Science and Technology of China, we have successfully fabricated various types of the coupled Xmon devices having the qubit numbers ranging from 4 to 10. Quantum entanglement, quantum algorithm of solving coupled linear equations, and quantum simulation of the many-body localization problem in solid-state physics have been demonstrated by using these devices. Also, we have made significant achievements in the studies of the macroscopic quantum phenomena, quantum dissipation, quantum microwave lasing, and some other quantum optics problems. In particular, Autler-Townes splitting under strong microwave drive, electromagnetically induced transparency, stimulated Raman adiabatic passage, microwave mixing, correlated emission lasing, and microwave frequency up-and-down conversion have been successfully studied, both experimentally and theoretically.
      通信作者: 赵士平, spzhao@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91321208)资助的课题.
      Corresponding author: Zhao Shi-Ping, spzhao@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91321208).
    [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [2]

    Wendin G, Shumeiko V S 2006 in Rieth M, Schommers W eds. Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers)

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [4]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [5]

    Wendin G 2016 arXiv: 161002208 [quant-ph] [2018-4-28]

    [6]

    Liu W Y, Zheng D N, Zhao S P 2018 Chin. Phys. B 27 027401

    [7]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718-719 1

    [8]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Ye, Zhu X B, Zheng D N, Lu Li, Zhao S P 2017 Chin. Phys. B 26 060308

    [9]

    Xue G M, Deng H, Tian Ye, Liu W Y, Xu H K, Zheng D N, Zhao S P Chinese Patent Z L 2017 201410475485X (in Chinese) [薛光明, 邓辉, 田野, 刘伟洋, 徐晖凯, 郑东宁, 赵士平 2017 中国专利 ZL 201410475485X]

    [10]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Ye, Zhu X B, Lu Li, Han S, Zhao S P 2018 Supercond. Sci. Technol. 31 045003

    [11]

    Jin Y R, Deng H, Guo X Y, Zheng Y R, Huang K Q, Ning L H, Zheng D N 2017 IEEE Trans. Appl. Supercond. 27 1501904

    [12]

    Liu W Y, Xu H K, Su F F, Li Z Y, Tian Ye, Han S, Zhao S P 2018 Phys. Rev. B 97 094513

    [13]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203

    [14]

    Zheng Y R, Song C, Chen M C, Xia B X, Liu W X, Guo Q J, Zhang L B, Xu D, Deng H, Huang K Q, Wu Y L, Yan Z G, Zheng D N, Lu Li, Pan J W, Wang H, Lu C Y, Zhu X B 2017 Phys. Rev. Lett. 118 210504

    [15]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507

    [17]

    Xue G M, Gong M, Xu H K, Liu W Y, Deng H, Tian Ye, Yu H F, Yu Y, Zheng D N, Zhao S P, Han S 2014 Phys. Rev. B 90 224505

    [18]

    Sun H C, Liu Y X, Ian H, You J Q, Il’ichev E, Nori F 2014 Phys. Rev. A 89 063822

    [19]

    Gu X, Huai S N, Nori F, Liu Y X 2016 Phys. Rev. A 93 063827

    [20]

    Long J L, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X, Pappas D P 2018 Phys. Rev. Lett. 120 083602

    [21]

    Ding J H, Huai S N, Ian H, Liu Y X 2018 Sci. Rep. 8 4507

    [22]

    Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astfiev O, Tsai J S 2017 arXiv:170511118 [quant-ph] [2018-4-28]

    [23]

    Liu Y X, Xu X W, Miranowicz A, Nori F 2014 Phys. Rev. A 89 043818

    [24]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Ye, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Commun. 7 11018

    [25]

    Wu Y L, Yang L P, Zheng Y R, Deng H, Yan Z G, Zhao Y J, Huang K Q, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X B, Lu Li 2018 npj Quantum Information 4 50

    [26]

    Zhao Y J, Liu Y L, Liu Y X, Nori F 2015 Phys. Rev. A 91 053820

    [27]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [28]

    Peng Z H, Liu Y X, Peltonen J T, Yamamoto T, Tsai J S, Astafiev O 2015 Phys. Rev. Lett. 115 223603

    [29]

    Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S, Nori F 2014 Sci. Rep. 4 7289

    [30]

    Jia W Z, Wang Y W, Liu Y X 2017 Phys. Rev. A 96 053832

    [31]

    Zhao Y J, Ding J H, Peng Z H, Liu Y X 2017 Phys. Rev. A 95 043806

    [32]

    Tanamoto T, Ono K, Liu Y X, Nori F 2015 Sci. Rep. 5 10076

    [33]

    Gu X, Chen S, Liu Y X 2017 arXiv:171106829 [quant-ph] [2018-4-28]

    [34]

    Ian H, Liu Y X 2014 Phys. Rev. A 89 043804

  • [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [2]

    Wendin G, Shumeiko V S 2006 in Rieth M, Schommers W eds. Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers)

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [4]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [5]

    Wendin G 2016 arXiv: 161002208 [quant-ph] [2018-4-28]

    [6]

    Liu W Y, Zheng D N, Zhao S P 2018 Chin. Phys. B 27 027401

    [7]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718-719 1

    [8]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Ye, Zhu X B, Zheng D N, Lu Li, Zhao S P 2017 Chin. Phys. B 26 060308

    [9]

    Xue G M, Deng H, Tian Ye, Liu W Y, Xu H K, Zheng D N, Zhao S P Chinese Patent Z L 2017 201410475485X (in Chinese) [薛光明, 邓辉, 田野, 刘伟洋, 徐晖凯, 郑东宁, 赵士平 2017 中国专利 ZL 201410475485X]

    [10]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Ye, Zhu X B, Lu Li, Han S, Zhao S P 2018 Supercond. Sci. Technol. 31 045003

    [11]

    Jin Y R, Deng H, Guo X Y, Zheng Y R, Huang K Q, Ning L H, Zheng D N 2017 IEEE Trans. Appl. Supercond. 27 1501904

    [12]

    Liu W Y, Xu H K, Su F F, Li Z Y, Tian Ye, Han S, Zhao S P 2018 Phys. Rev. B 97 094513

    [13]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203

    [14]

    Zheng Y R, Song C, Chen M C, Xia B X, Liu W X, Guo Q J, Zhang L B, Xu D, Deng H, Huang K Q, Wu Y L, Yan Z G, Zheng D N, Lu Li, Pan J W, Wang H, Lu C Y, Zhu X B 2017 Phys. Rev. Lett. 118 210504

    [15]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507

    [17]

    Xue G M, Gong M, Xu H K, Liu W Y, Deng H, Tian Ye, Yu H F, Yu Y, Zheng D N, Zhao S P, Han S 2014 Phys. Rev. B 90 224505

    [18]

    Sun H C, Liu Y X, Ian H, You J Q, Il’ichev E, Nori F 2014 Phys. Rev. A 89 063822

    [19]

    Gu X, Huai S N, Nori F, Liu Y X 2016 Phys. Rev. A 93 063827

    [20]

    Long J L, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X, Pappas D P 2018 Phys. Rev. Lett. 120 083602

    [21]

    Ding J H, Huai S N, Ian H, Liu Y X 2018 Sci. Rep. 8 4507

    [22]

    Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astfiev O, Tsai J S 2017 arXiv:170511118 [quant-ph] [2018-4-28]

    [23]

    Liu Y X, Xu X W, Miranowicz A, Nori F 2014 Phys. Rev. A 89 043818

    [24]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Ye, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Commun. 7 11018

    [25]

    Wu Y L, Yang L P, Zheng Y R, Deng H, Yan Z G, Zhao Y J, Huang K Q, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X B, Lu Li 2018 npj Quantum Information 4 50

    [26]

    Zhao Y J, Liu Y L, Liu Y X, Nori F 2015 Phys. Rev. A 91 053820

    [27]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [28]

    Peng Z H, Liu Y X, Peltonen J T, Yamamoto T, Tsai J S, Astafiev O 2015 Phys. Rev. Lett. 115 223603

    [29]

    Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S, Nori F 2014 Sci. Rep. 4 7289

    [30]

    Jia W Z, Wang Y W, Liu Y X 2017 Phys. Rev. A 96 053832

    [31]

    Zhao Y J, Ding J H, Peng Z H, Liu Y X 2017 Phys. Rev. A 95 043806

    [32]

    Tanamoto T, Ono K, Liu Y X, Nori F 2015 Sci. Rep. 5 10076

    [33]

    Gu X, Chen S, Liu Y X 2017 arXiv:171106829 [quant-ph] [2018-4-28]

    [34]

    Ian H, Liu Y X 2014 Phys. Rev. A 89 043804

  • [1] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [2] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [3] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [4] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [5] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [6] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 物理学报, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [7] 宿非凡, 杨钊华, 赵寿宽, 严海生, 田野, 赵士平. 铌基超导量子比特及辅助器件的制备. 物理学报, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [8] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [9] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [10] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [11] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [12] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [13] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [14] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [15] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [16] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [18] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [19] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  10070
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 修回日期:  2018-05-14
  • 刊出日期:  2019-11-20

/

返回文章
返回