搜索

x
专题

更多 
领域
文章类型

二维磁性材料

       当前, 尽管集成电路制造工艺不断提高, 但由于器件的不断缩小, 受到量子效应的限制, 业界遇到了可靠性低、功耗大等瓶颈, 微电子行业延续了近 50年的“摩尔定律”将难以持续. 因此, 寻求从材料到系统的各个层面探究突破集成电路性能瓶颈的方案是亟待解决的关键科学问题. 自旋电子学有望突破上述瓶颈, 已成为后摩尔时代集成电路领域的关键技术之一. 1988年巨磁阻效应的发现标志着自旋电子学的诞生, 并带来了信息存储领域的快速发展. 由于在自旋电子学领域的杰出贡献,艾尔伯-费尔和皮特-葛伦伯格两位教授荣获 2007年诺贝尔物理学奖. 磁性材料是自旋电子器件的基础, 不同于传统磁性薄膜, 二维磁性材料的出现和其优势为传感、存储、电子及医学等诸多领域打开了新的局面, 受到国内外的广泛关注. 二维磁性材料其特点在于以层状的形式存在, 通过范德瓦耳斯力即分子间作用力堆叠在一起, 层内原子以化学键进行连接, 在原子级厚度下依然在磁学、电学、力学、光学等方面保持新奇的物理和化学特性. 进一步地, 通过较弱的范德瓦耳斯相互作用与相邻层结合, 使得匹配度不同的原子层结合成为可能, 进而创建多种范德瓦耳斯异质结构, 摆脱晶格匹配和兼容性的限制, 从而为实现具有电路微型化、力学柔韧性、三维堆叠高密度、响应速率快和高开关比性能的磁传感器和非易失随机存储器等新型自旋电子学器件提供了新的契机.
      应《物理学报》编辑部的邀请, 我们邀请了部分活跃在二维磁性材料研究第一线的中青年科学家, 组织了本期的专题, 大致涵盖如下几方面内容: 在关于二维磁性材料的居里温度方面, 聂天晓老师综述了二维磁性材料的发展过程、制备方法及其优越性能, 并着重阐述了调控二维磁性材料居里温度的方法. 在磁性拓扑材料方面, 何庆林老师以具有层状结构的本征磁性拓扑绝缘体、磁性外尔半金属、磁性狄拉克半金属等为例简要综述磁序与拓扑序之间的相互作用和近期部分的重要实验结果; 沈冰老师的实验结果表明了 EuIn2As2的金属态性质, 通过掺杂 Ca来调节体系的费米能级和磁性. 在二维磁性材料性能调控方面, 邵启明老师介绍了近几年来二维材料中新型磁响应的实验研究进展; 龙根和张广宇老师综述了 CrI3二维磁性材料的生长、磁性结构测量和调控, 并对下一阶段的工作从基础凝聚态物理研究以及电子工程应用角度做出展望; 王伟和王琳老师总结了二维磁性材料的种类类型、合成方法、基本特性以及表征手段, 系统归纳了关于二维磁性材料物性调控方面的研究工作, 并对二维磁性材料的未来研究方向和挑战进行了简单的展望; 王以林老师综述了近年来发现的各类本征二维磁性材料的晶体结构、磁结构和磁性能, 并讨论了由磁场、电场、静电掺杂、离子插层、堆叠方式、应变、界面等外场调控二维磁性材料磁性能的研究进展, 最后总结并展望了二维磁性材料未来发展的研究方向. 在基于二维磁性材料的异质结方面, 林晓阳老师基于密度泛函理论与非平衡格林函数方法, 研究了 Fe3GeTe2/石墨烯二维异质结在有无氮化硼作隧穿层情况下的输运性质; 王守国和于国强老师综述了与二维材料及其异质结构中自旋轨道矩研究相关的最新进展, 主要包括基于非磁性二维材料和磁性二维材料的异质结中自旋轨道矩的产生、表征和对磁矩的操控等.
       本专题从不同的角度描述了二维磁性材料在理论与实验方面的进展, 反映了此领域当前的研究现状, 希望对读者了解此前沿课题有所帮助.
客座编辑:聂天晓 北京航空航天大学; 邵启明 香港科技大学
物理学报. 2021, 70(12).
二维材料中贝里曲率诱导的磁性响应
刘雨亭, 贺文宇, 刘军伟, 邵启明
2021, 70 (12): 127303. doi: 10.7498/aps.70.20202132
摘要 +
二维材料中由贝里曲率诱导的新型磁学响应是近年来的新兴领域. 这些二维材料所表现出的磁学特性及量子输运与贝里曲率直接相关, 而贝里曲率又与晶体的对称性、电子的轨道磁性、自旋轨道耦合以及磁电效应等息息相关. 研究这些新型磁性响应一方面有益于研究不同量子效应间的耦合作用, 另一方面可探索量子效应在电子与信息器件领域的应用. 本文介绍了近几年来二维材料中新型磁响应的实验研究进展, 特别介绍了二硫化钼和石墨烯等材料中的谷霍尔和磁电效应、低对称性的二碲化钨等材料中的量子非线性霍尔以及转角石墨烯中的反常霍尔和量子反常霍尔效应. 本文结合二维材料的晶体结构以及电子结构, 介绍了这些新奇现象的现有物理解释、回顾了相关研究的最新发展、讨论了其中尚未理解的现象, 并作出展望.
轴子拓扑绝缘体候选材料层状${\bf{Eu}}_{ 1- x}{\bf{Ca}}_{ x}{\bf{In}}_{\bf2}{\bf{As}}_{\bf2}$的物性研究
易恩魁, 王彬, 沈韩, 沈冰
2021, 70 (12): 127502. doi: 10.7498/aps.70.20210042
摘要 +
二维磁性材料的研究推动了现代纳米电子器件的发展. 寻找本征的具有磁性的层状材料, 为探索研究新的二维磁性材料、制备二维电子器件提供了重要的材料基础. 近来, 本征二维反铁磁拓扑材料的发现引起了人们的广泛关注和兴趣. $ {\rm{EuIn}}_{2}{\rm{As}}_{2} $被预言是一种轴子拓扑绝缘材料, 它具有典型的反铁磁序和层状的晶体结构, 其潜在的多种拓扑量子效应可以为未来新型电子学器件提供新的发展思路. 实验结果表明$ {\rm{EuIn}}_{2}{\rm{As}}_{2} $处于金属态, 而非绝缘态. 本文通过掺杂Ca来调节体系的费米能级和磁性, 发现$ {\rm{E}}{{\rm{u}}_{1 - x}}{\rm{C}}{{\rm{a}}_x}{\rm{I}}{{\rm{n}}_2}{\rm{A}}{{\rm{s}}_2} $中仍然存在与母体类似的长程反铁磁的结果. 反铁磁矩沿面内方向, 符合理论预言的轴子态磁结构. 在反铁磁转变温度以上发现了铁磁极化子. 由此可见, 非磁性杂质掺杂对体系的磁性影响不大, 但是载流子浓度却降低了一个数量级, 费米能级沿电子型方向进行调制. 本文的研究为在二维磁性材料中探索和诱导非平庸拓扑态提供了重要信息.
二维磁性材料专题编者按
2021, 70 (12): 120101. doi: 10.7498/aps.70.120101
摘要 +
二维磁性材料及多场调控研究进展
肖寒, 弭孟娟, 王以林
2021, 70 (12): 127503. doi: 10.7498/aps.70.20202204
摘要 +
二维磁性材料是二维材料家族的新成员, 其在单原胞层厚度依然保持长程磁序且易受外场调控, 这为二维极限下的磁性以及其他新奇物理效应的研究提供了理想的平台, 又为低功耗自旋电子学/磁存储器件的研制开辟了新的途径, 成为国际上备受关注的前沿热点. 本综述首先系统介绍了近年来发现的各类本征二维磁性材料的晶体结构、磁结构以及磁性能, 并讨论了由磁场、电场、静电掺杂、离子插层、堆叠方式、应变、界面等外场调控二维磁性材料磁性能的研究进展, 最后进行总结并展望了二维磁性材料未来发展的研究方向. 深入理解二维磁性材料磁性的起源和机理、研究其磁性能与微观结构之间的关联, 为寻找具有更高居里温度(奈尔温度)的磁性材料、设计多功能的新概念器件具有重要意义.
层状磁性拓扑材料中的物理问题与实验进展
孙慧敏, 何庆林
2021, 70 (12): 127302. doi: 10.7498/aps.70.20210133
摘要 +
层状磁性材料与拓扑材料的交汇点同时结合了二者的优势, 形成了在最小二维单元下同时具有磁序和拓扑性的材料体系, 即层状磁性拓扑材料. 这类材料的电子结构中可能存在狄拉克点、外尔点、节线等具有螺旋性或手性的拓扑电子态, 同时涵盖了绝缘体、半金属和金属等的材料分类, 导致新物性、新现象成为可能, 因此引起了广泛的关注. 本文主要以具有层状结构的本征磁性拓扑绝缘体、磁性外尔半金属、磁性狄拉克半金属等为例简要综述磁序与拓扑序之间的相互作用和近期部分的重要实验结果. 此交叉材料领域方兴未艾, 候选材料仍然非常缺乏, 亟待进一步的开发和研究, 是当前一个富有挑战的凝聚态物理前沿.
二维CrI3晶体的磁性测量与调控
张颂歌, 陈雨彤, 王宁, 柴扬, 龙根, 张广宇
2021, 70 (12): 127504. doi: 10.7498/aps.70.20202197
摘要 +
长久以来, 人们普遍相信低维(三维以下)长程序无法在任何有限的温度下稳定存在. 这是因为温度带来的热涨落会破坏由各向同性的短程相互作用支撑的低维体系中对称性破缺的有序态. 然而, 这个定理同时要求相互作用是短程且各向同性的. 事实上很多低维体系是不满足这两个限定条件的. 比如二维CrI3晶体中由于强各向异性的存在, 其磁子色散关系中有禁带存在. 当温度值远远低于该禁带宽度时, 磁子无法被温度大规模激发, 该二维体系中的长程磁序也就不会被破坏. 人们已经利用不同的手段对二维原子层厚度CrI3中的磁序进行了表征, 并且做了大量尝试来调控该体系中的磁性结构. 本文主要综述了CrI3二维磁性材料的生长、磁性结构测量和磁性结构调控, 并对下一阶段的工作从基础凝聚态物理研究以及电子工程应用角度做出展望.
基于二维材料的自旋-轨道矩研究进展
何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国
2021, 70 (12): 127501. doi: 10.7498/aps.70.20210004
摘要 +
在具有自旋-轨道耦合效应的材料中, 电荷流能够诱导产生垂直于电流方向的纯自旋流, 当其注入近邻的磁性层时, 会对其磁矩产生自旋-轨道矩. 自旋-轨道矩能够快速、高效地翻转磁矩, 为开发高性能的自旋电子器件提供了一种极佳的磁矩操控方式. 二维材料由于具有很多的优点, 如种类丰富、具有多样化的晶体结构和对称性、能够克服晶格失配形成高质量的异质结、具有强自旋-轨道耦合、电导率可调等, 为研究自旋-轨道矩提供了独特的平台, 因此引起了人们的广泛关注. 本文涵盖了近年来与二维材料及其异质结构中自旋-轨道矩研究相关的最新进展, 主要包括了基于非磁性二维材料(如MoS2, WSe2, WS2, WTe2, TaTe2, MoTe2, NbSe2, PtTe2, TaS2等)和磁性二维材料(如Fe3GeTe2, Cr2Ge2Te6等)的异质结中自旋-轨道矩的产生、表征和对磁矩的操控等. 最后指出了目前研究中尚未解决的问题与挑战.
Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入
杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜
2021, 70 (12): 129101. doi: 10.7498/aps.70.20202136
摘要 +
最近, 二维铁磁材料的发现加速了自旋电子学在超低功耗电子器件方面的应用. 其中, Fe3GeTe2通过实验调控, 比如界面层间耦合和离子液体调控, 可以使其居里温度达到室温, 具有广泛的应用前景. 本文基于密度泛函理论与非平衡格林函数方法, 研究了Fe3GeTe2/石墨烯二维异质结在有无氮化硼作隧穿层情况下的输运性质. 结果表明: 当Fe3GeTe2/石墨烯之间为透明接触时, 由于电子轨道杂化, 在 ± 0.1 V偏压下可以实现有效的自旋注入. 通过加入氮化硼作为隧穿层, 则可以在更宽偏压范围[–0.3 V, 0.3 V]内实现高效自旋隧穿注入; 并且, 由于Fe3GeTe2与石墨烯电子态在布里渊区的空间匹配程度取决于电子自旋方向, 相应出现的自旋过滤效应导致了接近100%的自旋极化率. 这些研究结果有望推动二维全自旋逻辑以及相关超低功耗自旋电子器件的发展.
大面积二维磁性材料的制备及居里温度调控
王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜
2021, 70 (12): 127301. doi: 10.7498/aps.70.20210223
摘要 +
当前, 尽管集成电路制造工艺水平不断提高, 但受到量子效应的限制, 器件尺寸的缩小使业界遇到了可靠性低、功耗大等瓶颈, 微电子行业延续了近50年的“摩尔定律”将难以持续. 2004年二维材料—石墨烯的问世, 为突破集成电路的功耗瓶颈带来了新的机遇. 由于低维特性, 二维材料在一层或者几层原子厚度中表现出丰富多样的电学、磁学、力学和光学等物理特性. 其中, 铁磁性在信息处理、存储等技术上有着广泛的应用价值. 然而, 目前在实验上合成的具有铁磁性的二维材料屈指可数. 同时, 在二维系统中长程有序磁态会因为热涨落的因素在有限温度内受到强烈的抑制, 无法在室温下保持铁磁性, 这为后续工作带来了不可忽视的限制与挑战. 因此实现二维磁性材料室温下的铁磁有序及其调控是现阶段需要解决的重大问题. 本综述详细地介绍了二维磁性材料的发展过程、制备方法及其优越性能, 并着重阐述了调控二维磁性材料居里温度的方法. 最后, 扼要地分析并展望了二维磁性材料在未来的应用前景.
二维磁性材料的物性研究及性能调控
蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳
2021, 70 (12): 127801. doi: 10.7498/aps.70.20202146
摘要 +
以石墨烯和二硫化钼为代表的二维材料, 由于具有良好的电学、热学、光学以及力学性质, 近年来成为了科学界一大研究热点. 而作为二维材料的分支, 二维磁性材料由于具有磁各向异性、单层磁有序等特殊性质, 特别是磁性还可借助多种物理场进行调控, 使其具有丰富的物理特性和潜在的应用价值, 逐渐受到研究者的普遍关注. 本文详细总结了二维磁性材料的种类类型、合成方法、基本特性以及表征手段, 系统归纳了关于二维磁性材料物性调控方面的研究工作, 并对二维磁性材料的未来研究方向和挑战进行简单的展望.