搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状磁性拓扑材料中的物理问题与实验进展

孙慧敏 何庆林

引用本文:
Citation:

层状磁性拓扑材料中的物理问题与实验进展

孙慧敏, 何庆林

Physical problems and experimental progress in layered magnetic topological materials

Sun Hui-Min, He Qing-Lin
PDF
HTML
导出引用
  • 层状磁性材料与拓扑材料的交汇点同时结合了二者的优势, 形成了在最小二维单元下同时具有磁序和拓扑性的材料体系, 即层状磁性拓扑材料. 这类材料的电子结构中可能存在狄拉克点、外尔点、节线等具有螺旋性或手性的拓扑电子态, 同时涵盖了绝缘体、半金属和金属等的材料分类, 导致新物性、新现象成为可能, 因此引起了广泛的关注. 本文主要以具有层状结构的本征磁性拓扑绝缘体、磁性外尔半金属、磁性狄拉克半金属等为例简要综述磁序与拓扑序之间的相互作用和近期部分的重要实验结果. 此交叉材料领域方兴未艾, 候选材料仍然非常缺乏, 亟待进一步的开发和研究, 是当前一个富有挑战的凝聚态物理前沿.
    The intersection between layered magnetic materials and topological materials combines the advantages of the two, forming a material system with both the magnetic orders and topological properties within the minimum two-dimensional unit, i.e. layered magnetic topological materials. This type of material may host Dirac points, Weyl points, nodal lines, etc. which are associated with helical or chiral electronic states ranging from insulator, semimetal to metal. This results in lots of novel physical problems and effects, which attract much attention of scientists. In this paper, we focus our attention on intrinsic magnetic topological insulator, magnetic Weyl semimetal, magnetic Dirac semimetal, and take them for example to briefly review the interplay between magnetic orders and topological orders and recent experimental results. This emergent area requires further studies to explore more new material candidates, which is a challenging frontier of condensed matter physics.
      通信作者: 何庆林, qlhe@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0308900, 2018YFA0305601)、国家自然科学基金(批准号: 11874070)和中国科学院战略性先导科技专项(B类) (批准号: XDB28000000)资助的课题
      Corresponding author: He Qing-Lin, qlhe@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308900, 2018YFA0305601), the National Natural Science Foundation of China (Grant No. 11874070), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB28000000)
    [1]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [2]

    Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Beyond Particle Physics 2016 Nat. Mater. 15 1139Google Scholar

    [5]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [6]

    Hu J, Xu S Y, Ni N, Mao Z 2019 Annu. Rev. Mater. Res. 49 207Google Scholar

    [7]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [8]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [9]

    Johnston R L, Hoffmann R 1990 Polyhedron 9 1901Google Scholar

    [10]

    Cépas O, Fong C M, Leung P W, Lhuillier C 2008 Phys. Rev. B 78 140405Google Scholar

    [11]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102Google Scholar

    [12]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [13]

    Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C, Zhang Z 2018 Phys. Rev. Lett. 121 096401Google Scholar

    [14]

    Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G, Comin R 2020 Nat. Mater. 19 163Google Scholar

    [15]

    Yang S, Xu X, Zhu Y, Niu R, Xu C, Peng Y, Cheng X, Jia X, Huang Y, Xu X, Lu J, Ye Y 2021 Phys. Rev. X 11 011003Google Scholar

    [16]

    Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [17]

    Wu J, Liu F, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T, Hosono H 2019 Sci. Adv. 5 eaax9989Google Scholar

    [18]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522Google Scholar

    [19]

    Hu C, Gordon K N, Liu P, Liu J, Zhou X, Hao P, Narayan D, Emmanouilidou E, Sun H, Liu Y, Brawer H, Ramirez A P, Ding L, Cao H, Liu Q, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [20]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [21]

    Otrokov M M, Klimovskikh, I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [22]

    Liu E, Sun Y, Kumar N, Muchler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Suss V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [23]

    Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, Lei H 2018 Nat. Commun. 9 3681Google Scholar

    [24]

    Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar

    [25]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [26]

    Li S, Gu G, Liu E, Cheng P, Feng B, Li Y, Chen L, Wu K 2020 ACS Appl. Electron. Mater. 2 126Google Scholar

    [27]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [28]

    Li X, Collignon C, Xu L, Zuo H, Cavanna A, Gennser U, Mailly D, Fauque B, Balents L, Zhu Z, Behnia K 2019 Nat. Commun. 10 3021Google Scholar

    [29]

    Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kubler J, Felser C, Parkin S S 2016 Sci. Adv. 2 e1501870Google Scholar

    [30]

    Wang Q, Sun S, Zhang X, Pang F, Lei H 2016 Phys. Rev. B 94 075135Google Scholar

    [31]

    Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [32]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [33]

    Checkelsky J G, Ye J, Onose Y, Iwasa Y, Tokura Y 2012 Nat. Phys. 8 729Google Scholar

    [34]

    Kou X, Lang M, Fan Y, Jiang Y, Nie T, Zhang J, Jiang W, Wang Y, Yao Y, He L, Wang K L 2013 ACS Nano 7 9205Google Scholar

    [35]

    Li M, Chang C Z, Wu L, Tao J, Zhao W, Chan M H, Moodera J S, Li J, Zhu Y 2015 Phys. Rev. Lett. 114 146802Google Scholar

    [36]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [37]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [38]

    Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M, Tokura Y 2016 Nat. Commun. 7 12245Google Scholar

    [39]

    Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M, Yu G, Jiang W, Nie T, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [40]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [41]

    Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K S, Ezawa M, Kawasaki M, Nagaosa N, Tokura Y 2016 Nat. Phys. 12 555Google Scholar

    [42]

    He Q L, Yin G, Grutter A J, Pan L, Che X, Yu G, Gilbert D A, Disseler S M, Liu Y, Shafer P, Zhang B, Wu Y, Kirby B J, Arenholz E, Lake R K, Han X, Wang K L 2018 Nat. Commun. 9 2767Google Scholar

    [43]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [44]

    Chen B, Fei F, Zhang D, Zhang B, Liu W, Zhang S, Wang P, Wei B, Zhang Y, Zuo Z, Guo J, Liu Q, Wang Z, Wu X, Zong J, Xie X, Chen W, Sun Z, Wang S, Zhang Y, Zhang M, Wang X, Song F, Zhang H, Shen D, Wang B 2019 Nat. Commun. 10 4469Google Scholar

    [45]

    Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [46]

    Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H, Liu Q 2019 Phys. Rev. Lett. 123 096401Google Scholar

    [47]

    Vidal R C, Zeugner A, Facio J I, Ray R, Haghighi M H, Wolter A U B, Corredor Bohorquez L T, Caglieris F, Moser S, Figgemeier T, Peixoto T R F, Vasili H B, Valvidares M, Jung S, Cacho C, Alfonsov A, Mehlawat K, Kataev V, Hess C, Richter M, Büchner B, van den Brink J, Ruck M, Reinert F, Bentmann H, Isaeva A 2019 Phys. Rev. X 9 041065Google Scholar

    [48]

    Du M H, Yan J, Cooper V R, Eisenbach M 2020 Adv. Funct. Mater. 31 2006516Google Scholar

    [49]

    Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [50]

    Eremeev S V, Otrokov M M, Chulkov E V 2017 J. Alloys Compd. 709 172Google Scholar

    [51]

    Murakami T, Nambu Y, Koretsune T, Xiangyu G, Yamamoto T, Brown C M, Kageyama H 2019 Phys. Rev. B 100 195103Google Scholar

    [52]

    Shi G, Zhang M, Yan D, Feng H, Yang M, Shi Y, Li Y 2020 Chin. Phys. Lett. 37 047301Google Scholar

    [53]

    Wimmer S, Sánchez-Barriga J, Küppers P, Ney A, Schierle E, Freyse F, Caha O, Michalicka J, Liebmann M, Primetzhofer D, Hoffmann M, Ernst A, Otrokov M M, Bihlmayer G, Weschke E, Lake B, Chulkov E V, Morgenstern M, Bauer G, Springholz G, Rader O 2020 ArXiv 2011.07052

    [54]

    Yan J Q, Okamoto S, McGuire M A, May A F, McQueeney R J, Sales B C 2019 Phys. Rev. B 100 104409Google Scholar

    [55]

    Chen Y, Chuang Y-W, Lee S H, Zhu Y, Honz K, Guan Y, Wang Y, Wang K, Mao Z, Zhu J, Heikes C, Quarterman P, Zajdel P, Borchers J A, Ratcliff W 2020 Phys. Rev. Mater. 4 064411Google Scholar

    [56]

    Mong R S K, Essin A M, Moore J E 2010 Phys. Rev. B 81 245209Google Scholar

    [57]

    Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R e, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q, Liu C 2019 Phys. Rev. X 9 041038Google Scholar

    [58]

    Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040Google Scholar

    [59]

    Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar

    [60]

    Yuan Y, Wang X, Li H, Li J, Ji Y, Hao Z, Wu Y, He K, Wang Y, Xu Y, Duan W, Li W, Xue Q K 2020 Nano Lett. 20 3271Google Scholar

    [61]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [62]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [63]

    Fujita T C, Kozuka Y, Uchida M, Tsukazaki A, Arima T, Kawasaki M 2015 Sci. Rep. 5 9711Google Scholar

    [64]

    Tian Z M, Kohama Y, Tomita T, Ishikawa J, Mairo H, Kindo K, Nakatsuji S 2016 J. Phys. Conf. Ser. 683 012024Google Scholar

    [65]

    Ueda K, Oh T, Yang B J, Kaneko R, Fujioka J, Nagaosa N, Tokura Y 2017 Nat. Commun. 8 15515Google Scholar

    [66]

    Ueda K, Kaneko R, Ishizuka H, Fujioka J, Nagaosa N, Tokura Y 2018 Nat. Commun. 9 3032Google Scholar

    [67]

    Guo L, Campbell N, Choi Y, Kim J W, Ryan P J, Huyan H, Li L, Nan T, Kang J H, Sundahl C, Pan X, Rzchowski M S, Eom C B 2020 Phys. Rev. B 101 104405Google Scholar

    [68]

    Kim W J, Oh T, Song J, Ko E K, Li Y, Mun J, Kim B, Son J, Yang Z, Kohama Y, Kim M, Yang B J, Noh T W 2020 Sci. Adv. 6 eabb1539Google Scholar

    [69]

    Ueda K, Fujioka J, Tokura Y 2016 Phys. Rev. B 93 245120Google Scholar

    [70]

    Shapiro M C, Riggs S C, Stone M B, de la Cruz C R, Chi S, Podlesnyak A A, Fisher I R 2012 Phys. Rev. B 85 214434Google Scholar

    [71]

    Zhu W K, Wang M, Seradjeh B, Yang F Y, Zhang S X 2014 Phys. Rev. B 90 054419Google Scholar

    [72]

    Yang W C, Zhu W K, Zhou H D, Ling L, Choi E S, Lee M, Losovyj Y, Lu C K, Zhang S X 2017 Phys. Rev. B 96 094437Google Scholar

    [73]

    Guan T, Lin C, Yang C, Shi Y, Ren C, Li Y, Weng H, Dai X, Fang Z, Yan S, Xiong P 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [74]

    Yang S, Li Z, Lin C, Yi C, Shi Y, Culcer D, Li Y 2019 Phys. Rev. Lett. 123 096601Google Scholar

    [75]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [76]

    Averkiev N S, Golub L E, Willander M 2002 J. Phys. Condens. Matter 14 R271Google Scholar

    [77]

    Culcer D, Das Sarma S 2011 Phys. Rev. B 83 245441Google Scholar

    [78]

    Arakawa N 2016 Phys. Rev. B 93 245128Google Scholar

    [79]

    Xu Q, Liu E, Shi W, Muechler L, Gayles J, Felser C, Sun Y 2018 Phys. Rev. B 97 235416Google Scholar

    [80]

    Liu C, Shen J, Gao J, Yi C, Liu D, Xie T, Yang L, Danilkin S, Deng G, Wang W, Li S, Shi Y, Weng H, Liu E, Luo H 2020 Sci. China, Ser. G 64 217062Google Scholar

    [81]

    Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, Hasan M Z 2015 Science 347 294Google Scholar

    [82]

    Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar

    [83]

    Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P, Yan B 2017 New J. Phys. 19 015008Google Scholar

    [84]

    Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090Google Scholar

    [85]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W, Hasan M Z 2018 Nature 562 91Google Scholar

    [86]

    Ye L, Chan M K, McDonald R D, Graf D, Kang M, Liu J, Suzuki T, Comin R, Fu L, Checkelsky J G 2019 Nat. Commun. 10 4870Google Scholar

    [87]

    Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G, Comin R 2020 Nat. Commun. 11 4004Google Scholar

    [88]

    Lin Z, Wang C, Wang P, Yi S, Li L, Zhang Q, Wang Y, Wang Z, Huang H, Sun Y, Huang Y, Shen D, Feng D, Sun Z, Cho J H, Zeng C, Zhang Z 2020 Phys. Rev. B 102 155103Google Scholar

    [89]

    Giefers H, Nicol M 2006 J. Alloys Compd. 422 132Google Scholar

    [90]

    Kulshreshtha S K, Raj P 1981 J. Phys. F: Met. Phys. 11 281Google Scholar

    [91]

    Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 Appl. Phys. Lett. 107 182401Google Scholar

    [92]

    Deng H, Chen Z, Wołoś A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I V, Borysiuk J, Heider T, Pluciński Ł, Park K, Georgescu A B, Cano J, Krusin-Elbaum L 2020 Nat. Phys. 17 36Google Scholar

    [93]

    Chen R, Li S, Sun H P, Zhao Y, Lu H Z, Xie X C 2020 arXiv 2005.14074

    [94]

    Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J 2020 Nat. Sci. Rev. 7 1280Google Scholar

    [95]

    Xie H, Wang D, Cai Z, Chen B, Guo J, Naveed M, Zhang S, Zhang M, Wang X, Fei F, Zhang H, Song F 2020 Appl. Phys.Lett. 116 221902Google Scholar

    [96]

    Jo N H, Wang L L, Slager R-J, Yan J, Wu Y, Lee K, Schrunk B, Vishwanath A, Kaminski A 2020 Phys. Rev. B 102 045130Google Scholar

    [97]

    Tian S, Gao S, Nie S, Qian Y, Gong C, Fu Y, Li H, Fan W, Zhang P, Kondo T, Shin S, Adell J, Fedderwitz H, Ding H, Wang Z, Qian T, Lei H 2020 Phys. Rev. B 102 035144Google Scholar

    [98]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [99]

    Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [100]

    Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J, Bernevig B A 2016 Phys. Rev. Lett. 117 236401Google Scholar

    [101]

    Shen J, Yao Q, Zeng Q, Sun H, Xi X, Wu G, Wang W, Shen B, Liu Q, Liu E 2020 Phys. Rev. Lett. 125 086602Google Scholar

    [102]

    Kiyohara N, Tomita T, Nakatsuji S 2016 Phys. Rev. Appl. 5 064009Google Scholar

    [103]

    Goswami P, Pixley J H, Das Sarma S 2015 Phys. Rev. B 92 075205Google Scholar

    [104]

    Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B 2016 Nat. Commun. 7 11615Google Scholar

    [105]

    Reis R D D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [106]

    Schumann T, Goyal M, Kealhofer D A, Stemmer S 2017 Phys. Rev. B 95 241113Google Scholar

    [107]

    Breunig O, Wang Z, Taskin A A, Lux J, Rosch A, Ando Y 2017 Nat. Commun. 8 15545Google Scholar

    [108]

    Zhang H, Li H, Wang H, Cheng G, He H, Wang J 2018 Appl. Phys. Lett. 113 113503Google Scholar

    [109]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 e1806622Google Scholar

    [110]

    Xiao D, Yao Y, Fang Z, Niu Q 2006 Phys. Rev. Lett. 97 026603Google Scholar

    [111]

    Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S 2017 Nat. Phys. 13 1085Google Scholar

    [112]

    Li X, Xu L, Ding L, Wang J, Shen M, Lu X, Zhu Z, Behnia K 2017 Phys. Rev. Lett. 119 056601Google Scholar

    [113]

    Wuttke C, Caglieris F, Sykora S, Scaravaggi F, Wolter A U B, Manna K, Süss V, Shekhar C, Felser C, Büchner B, Hess C 2019 Phys. Rev. B 100 085111Google Scholar

    [114]

    Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys. Condens. Matter 23 112205Google Scholar

    [115]

    Li H, Ding B, Chen J, Li Z, Hou Z, Liu E, Zhang H, Xi X, Wu G, Wang W 2019 Appl. Phys. Lett. 114 192408Google Scholar

    [116]

    O'Neill C D, Wills A S, Huxley A D 2019 Phys. Rev. B 100 174420Google Scholar

    [117]

    Wang Q, Yin Q, Lei H 2020 Chin. Phys. B 29 017101Google Scholar

    [118]

    Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144Google Scholar

    [119]

    Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M, Du H 2021 Nat. Sci. Rev. 8 nwaa200Google Scholar

  • 图 1  本征反铁磁拓扑绝缘体MnBi2Te4的晶格结构、磁结构和电子结构 (a)晶格结构示意图, 其中Mn原子的自旋如红色箭头所示, 材料呈A型反铁磁序; (b)理论上不同厚度、磁化强度的MnBi2Te4 能实现的拓扑相; (c), (d)利用角分辨光电子能谱测量的表面能带结构. 图(a)来自文献[44], 图(b)来自文献[46], 图(c)来自文献[21], 图(d)来自文献[57]

    Fig. 1.  Crystalline, magnetic, and electronic structures of intrinsic antiferromagnetic topological insulator MnBi2Te4: (a) Schematic crystalline structure, the spins of Mn atoms are shown as red arrows, showing a type-A antiferromagnetic order; (b) topological phase diagram of MnBi2Te4 with different thicknesses and magnetizations; (c), (d) angle resolved photoemission spectroscopies of surface electronic structures. (a) is adopted from Ref. [44], (b) from Ref. [46], (c) from Ref. [21], and (d) from Ref. [57].

    图 2  磁性外尔半金属Co3Sn2S2的晶格结构、磁结构和电子结构 (a)晶格结构示意图, 其中Co原子的自旋如红色箭头所示, 材料呈铁磁序; (b), (c)利用角分辨光电子能谱测量的能带结构. 图(a)来自文献[22], 图(b)和图(c)来自文献[82]

    Fig. 2.  Crystalline, magnetic, and electronic structures of magnetic Weyl semimetal Co3Sn2S2: (a) Schematic crystalline structure, the spins of Co atoms are shown as red arrows, showing a ferromagnetic order; (b), (c) angle resolved photoemission spectroscopies of the electronic structures. (a) is adopted from Ref. [22], (b) and (c) from Ref. [82].

    图 3  磁性外尔半金属Mn3Sn的晶格结构、磁结构和电子结构 (a), (b)晶格结构示意图, 其中Mn原子的自旋如蓝色箭头所示, 材料呈反铁磁序; (c), (d)利用角分辨光电子能谱测量的能带结构. 图(a)和图(b)来自文献[27], 图(c)和图(d)来自文献[84]

    Fig. 3.  Crystalline, magnetic, and electronic structures of magnetic Weyl semimetal Mn3Sn: (a), (b) Schematic crystalline structure, the spins of Co atoms are shown as blue arrows, showing an antiferromagnetic order; (c), (d) angle resolved photoemission spectroscopies of the electronic structures. (a) and (b) are adopted from Ref. [27], (c) and (d) from Ref. [84].

    图 4  磁性外尔半金属Fe3Sn的晶格结构和电子结构 (a)晶格结构示意图; (b)—(d)利用角分辨光电子能谱测量的能带结构. 图(a)来自文献[85], 图(b)—(d)来自文献[31]

    Fig. 4.  Crystalline and electronic structures of magnetic Weyl semimetal Fe3Sn: (a) Schematic crystalline structure; (b)–(d) angle resolved photoemission spectroscopies of the electronic structures. (a) is adopted from Ref. [85], (b)–(d) from Ref. [31].

    图 5  磁性外尔半金属FeSn的晶格结构、磁结构和电子结构 (a)晶格结构示意图, 其中Fe原子的自旋如红、蓝色箭头所示, 材料呈反铁磁序; (b), (c)利用角分辨光电子能谱测量的能带结构. 图(a)来自文献[88], 图(b)和图(c)来自文献[14]

    Fig. 5.  Crystalline, magnetic, and electronic structures of magnetic Weyl semimetal FeSn: (a) Schematic crystalline structure, the spins of Fe atoms are shown as red and blue arrows, showing an antiferromagnetic order; (b), (c) angle resolved photoemission spectroscopies of the electronic structures. (a) is adopted from Ref. [88], (b) and (c) from Ref. [14].

    图 6  本征磁性拓扑绝缘体的量子反常霍尔效应、轴子绝缘体态 (a)霍尔电阻; (b)磁阻; (c)零磁场下纵向电阻率的栅极电压调制; (d)磁场和栅极电压调制下的相图. 图(a)和图(b)来自文献[20], 图(c)和图(d)来自文献[18]

    Fig. 6.  Quantum anomalous Hall effect and axion insulating state in the intrinsic antiferromagnetic topological insulator: (a) Hall resistance; (b) magneto-resistance; (c) gate-bias modulated longitudinal resistivity under zero magnetic field; (d) a phase diagram of magnetic field and gate bias. (a) and (b) are adopted from Ref. [20], (c) and (d) from Ref. [18].

    图 7  磁性外尔半金属Co3Sn2S2的反常霍尔效应、手性异常和反常能斯特效应 (a)霍尔电导; (b)磁电导; (c), (d)反常能斯特热功率. 图(a)和图(b)来自文献[22], 图(c)和图(d)来自文献[109]

    Fig. 7.  Giant anomalous Hall effect, chiral anomaly, and anomalous Nernst effect in magnetic Weyl semimetal Co3Sn2S2: (a) Hall conductance; (b) magneto-electric conductance; (c), (d) anomalous Nernst thermal power. (a) and (b) are adopted from Ref. [22], (c) and (d) from Ref. [109].

    图 8  磁性外尔半金属Mn3Ge的反常霍尔效应、Mn3Sn的手性异常和反常能斯特效应 (a)动量空间中Mn3Ge的反常霍尔电导分布; (b)在Mn3Ge中自旋结构的镜面对称性; (c) Mn3Ge的霍尔电阻率; (d) Mn3Sn的面内外的纵向电导; (e) Mn3.06Sn0.94的反常能斯特热功率. 图(a)—(c)来自文献[29], 图(d)来自文献[84], 图(e)来自文献[111]

    Fig. 8.  Anomalous Hall effect in magnetic Weyl semimetal Mn3Ge, chiral anomalyand anomalous Nernst effect in magnetic Weyl semimetal Mn3Sn: (a) Distribution of anomalous Hall conductance of Mn3Ge in momentum space: (b) spin texture with mirror symmetry in Mn3Ge; (c) Hall resistivity of Mn3Ge; (d) longitudinal conductance of both in- and out-plane for Mn3Sn; (e) anomalous Nernst power of Mn3.06Sn0.94. (a)–(c) are adopted from Ref. [29], (d) from Ref. [84], (e) from Ref. [111].

    图 9  磁性狄拉克半金属Fe3Sn2的反常霍尔效应、拓扑霍尔效应、磁斯格明子磁泡 (a)霍尔电阻率; (b)拓扑霍尔电阻率; (c)温度-磁场下的相图; (d)观察到的斯格明子磁泡. 图(a)来自文献[31], 图(b)来自文献[117], 图(c)来自文献[115], 图(d)来自文献[118]

    Fig. 9.  Anomalous Hall effect, topological Hall effect, and skyrmion bubble in magnetic Dirac semimetal Fe3Sn2: (a) Hall resistivity; (b) topological Hall resistivity; (c) a phase diagram of temperature and magnetic field; (d) the observed skyrmion bubble. (a) is adopted from Ref. [31], (b) from Ref. [117], (c) from Ref. [115], (d) from Ref. [118].

  • [1]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [2]

    Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Beyond Particle Physics 2016 Nat. Mater. 15 1139Google Scholar

    [5]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [6]

    Hu J, Xu S Y, Ni N, Mao Z 2019 Annu. Rev. Mater. Res. 49 207Google Scholar

    [7]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [8]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [9]

    Johnston R L, Hoffmann R 1990 Polyhedron 9 1901Google Scholar

    [10]

    Cépas O, Fong C M, Leung P W, Lhuillier C 2008 Phys. Rev. B 78 140405Google Scholar

    [11]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102Google Scholar

    [12]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [13]

    Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C, Zhang Z 2018 Phys. Rev. Lett. 121 096401Google Scholar

    [14]

    Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G, Comin R 2020 Nat. Mater. 19 163Google Scholar

    [15]

    Yang S, Xu X, Zhu Y, Niu R, Xu C, Peng Y, Cheng X, Jia X, Huang Y, Xu X, Lu J, Ye Y 2021 Phys. Rev. X 11 011003Google Scholar

    [16]

    Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [17]

    Wu J, Liu F, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T, Hosono H 2019 Sci. Adv. 5 eaax9989Google Scholar

    [18]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522Google Scholar

    [19]

    Hu C, Gordon K N, Liu P, Liu J, Zhou X, Hao P, Narayan D, Emmanouilidou E, Sun H, Liu Y, Brawer H, Ramirez A P, Ding L, Cao H, Liu Q, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [20]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [21]

    Otrokov M M, Klimovskikh, I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [22]

    Liu E, Sun Y, Kumar N, Muchler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Suss V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [23]

    Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, Lei H 2018 Nat. Commun. 9 3681Google Scholar

    [24]

    Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar

    [25]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [26]

    Li S, Gu G, Liu E, Cheng P, Feng B, Li Y, Chen L, Wu K 2020 ACS Appl. Electron. Mater. 2 126Google Scholar

    [27]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [28]

    Li X, Collignon C, Xu L, Zuo H, Cavanna A, Gennser U, Mailly D, Fauque B, Balents L, Zhu Z, Behnia K 2019 Nat. Commun. 10 3021Google Scholar

    [29]

    Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kubler J, Felser C, Parkin S S 2016 Sci. Adv. 2 e1501870Google Scholar

    [30]

    Wang Q, Sun S, Zhang X, Pang F, Lei H 2016 Phys. Rev. B 94 075135Google Scholar

    [31]

    Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [32]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [33]

    Checkelsky J G, Ye J, Onose Y, Iwasa Y, Tokura Y 2012 Nat. Phys. 8 729Google Scholar

    [34]

    Kou X, Lang M, Fan Y, Jiang Y, Nie T, Zhang J, Jiang W, Wang Y, Yao Y, He L, Wang K L 2013 ACS Nano 7 9205Google Scholar

    [35]

    Li M, Chang C Z, Wu L, Tao J, Zhao W, Chan M H, Moodera J S, Li J, Zhu Y 2015 Phys. Rev. Lett. 114 146802Google Scholar

    [36]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [37]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [38]

    Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M, Tokura Y 2016 Nat. Commun. 7 12245Google Scholar

    [39]

    Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M, Yu G, Jiang W, Nie T, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [40]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [41]

    Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K S, Ezawa M, Kawasaki M, Nagaosa N, Tokura Y 2016 Nat. Phys. 12 555Google Scholar

    [42]

    He Q L, Yin G, Grutter A J, Pan L, Che X, Yu G, Gilbert D A, Disseler S M, Liu Y, Shafer P, Zhang B, Wu Y, Kirby B J, Arenholz E, Lake R K, Han X, Wang K L 2018 Nat. Commun. 9 2767Google Scholar

    [43]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [44]

    Chen B, Fei F, Zhang D, Zhang B, Liu W, Zhang S, Wang P, Wei B, Zhang Y, Zuo Z, Guo J, Liu Q, Wang Z, Wu X, Zong J, Xie X, Chen W, Sun Z, Wang S, Zhang Y, Zhang M, Wang X, Song F, Zhang H, Shen D, Wang B 2019 Nat. Commun. 10 4469Google Scholar

    [45]

    Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [46]

    Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H, Liu Q 2019 Phys. Rev. Lett. 123 096401Google Scholar

    [47]

    Vidal R C, Zeugner A, Facio J I, Ray R, Haghighi M H, Wolter A U B, Corredor Bohorquez L T, Caglieris F, Moser S, Figgemeier T, Peixoto T R F, Vasili H B, Valvidares M, Jung S, Cacho C, Alfonsov A, Mehlawat K, Kataev V, Hess C, Richter M, Büchner B, van den Brink J, Ruck M, Reinert F, Bentmann H, Isaeva A 2019 Phys. Rev. X 9 041065Google Scholar

    [48]

    Du M H, Yan J, Cooper V R, Eisenbach M 2020 Adv. Funct. Mater. 31 2006516Google Scholar

    [49]

    Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [50]

    Eremeev S V, Otrokov M M, Chulkov E V 2017 J. Alloys Compd. 709 172Google Scholar

    [51]

    Murakami T, Nambu Y, Koretsune T, Xiangyu G, Yamamoto T, Brown C M, Kageyama H 2019 Phys. Rev. B 100 195103Google Scholar

    [52]

    Shi G, Zhang M, Yan D, Feng H, Yang M, Shi Y, Li Y 2020 Chin. Phys. Lett. 37 047301Google Scholar

    [53]

    Wimmer S, Sánchez-Barriga J, Küppers P, Ney A, Schierle E, Freyse F, Caha O, Michalicka J, Liebmann M, Primetzhofer D, Hoffmann M, Ernst A, Otrokov M M, Bihlmayer G, Weschke E, Lake B, Chulkov E V, Morgenstern M, Bauer G, Springholz G, Rader O 2020 ArXiv 2011.07052

    [54]

    Yan J Q, Okamoto S, McGuire M A, May A F, McQueeney R J, Sales B C 2019 Phys. Rev. B 100 104409Google Scholar

    [55]

    Chen Y, Chuang Y-W, Lee S H, Zhu Y, Honz K, Guan Y, Wang Y, Wang K, Mao Z, Zhu J, Heikes C, Quarterman P, Zajdel P, Borchers J A, Ratcliff W 2020 Phys. Rev. Mater. 4 064411Google Scholar

    [56]

    Mong R S K, Essin A M, Moore J E 2010 Phys. Rev. B 81 245209Google Scholar

    [57]

    Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R e, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q, Liu C 2019 Phys. Rev. X 9 041038Google Scholar

    [58]

    Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040Google Scholar

    [59]

    Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar

    [60]

    Yuan Y, Wang X, Li H, Li J, Ji Y, Hao Z, Wu Y, He K, Wang Y, Xu Y, Duan W, Li W, Xue Q K 2020 Nano Lett. 20 3271Google Scholar

    [61]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [62]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [63]

    Fujita T C, Kozuka Y, Uchida M, Tsukazaki A, Arima T, Kawasaki M 2015 Sci. Rep. 5 9711Google Scholar

    [64]

    Tian Z M, Kohama Y, Tomita T, Ishikawa J, Mairo H, Kindo K, Nakatsuji S 2016 J. Phys. Conf. Ser. 683 012024Google Scholar

    [65]

    Ueda K, Oh T, Yang B J, Kaneko R, Fujioka J, Nagaosa N, Tokura Y 2017 Nat. Commun. 8 15515Google Scholar

    [66]

    Ueda K, Kaneko R, Ishizuka H, Fujioka J, Nagaosa N, Tokura Y 2018 Nat. Commun. 9 3032Google Scholar

    [67]

    Guo L, Campbell N, Choi Y, Kim J W, Ryan P J, Huyan H, Li L, Nan T, Kang J H, Sundahl C, Pan X, Rzchowski M S, Eom C B 2020 Phys. Rev. B 101 104405Google Scholar

    [68]

    Kim W J, Oh T, Song J, Ko E K, Li Y, Mun J, Kim B, Son J, Yang Z, Kohama Y, Kim M, Yang B J, Noh T W 2020 Sci. Adv. 6 eabb1539Google Scholar

    [69]

    Ueda K, Fujioka J, Tokura Y 2016 Phys. Rev. B 93 245120Google Scholar

    [70]

    Shapiro M C, Riggs S C, Stone M B, de la Cruz C R, Chi S, Podlesnyak A A, Fisher I R 2012 Phys. Rev. B 85 214434Google Scholar

    [71]

    Zhu W K, Wang M, Seradjeh B, Yang F Y, Zhang S X 2014 Phys. Rev. B 90 054419Google Scholar

    [72]

    Yang W C, Zhu W K, Zhou H D, Ling L, Choi E S, Lee M, Losovyj Y, Lu C K, Zhang S X 2017 Phys. Rev. B 96 094437Google Scholar

    [73]

    Guan T, Lin C, Yang C, Shi Y, Ren C, Li Y, Weng H, Dai X, Fang Z, Yan S, Xiong P 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [74]

    Yang S, Li Z, Lin C, Yi C, Shi Y, Culcer D, Li Y 2019 Phys. Rev. Lett. 123 096601Google Scholar

    [75]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [76]

    Averkiev N S, Golub L E, Willander M 2002 J. Phys. Condens. Matter 14 R271Google Scholar

    [77]

    Culcer D, Das Sarma S 2011 Phys. Rev. B 83 245441Google Scholar

    [78]

    Arakawa N 2016 Phys. Rev. B 93 245128Google Scholar

    [79]

    Xu Q, Liu E, Shi W, Muechler L, Gayles J, Felser C, Sun Y 2018 Phys. Rev. B 97 235416Google Scholar

    [80]

    Liu C, Shen J, Gao J, Yi C, Liu D, Xie T, Yang L, Danilkin S, Deng G, Wang W, Li S, Shi Y, Weng H, Liu E, Luo H 2020 Sci. China, Ser. G 64 217062Google Scholar

    [81]

    Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, Hasan M Z 2015 Science 347 294Google Scholar

    [82]

    Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar

    [83]

    Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P, Yan B 2017 New J. Phys. 19 015008Google Scholar

    [84]

    Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090Google Scholar

    [85]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W, Hasan M Z 2018 Nature 562 91Google Scholar

    [86]

    Ye L, Chan M K, McDonald R D, Graf D, Kang M, Liu J, Suzuki T, Comin R, Fu L, Checkelsky J G 2019 Nat. Commun. 10 4870Google Scholar

    [87]

    Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G, Comin R 2020 Nat. Commun. 11 4004Google Scholar

    [88]

    Lin Z, Wang C, Wang P, Yi S, Li L, Zhang Q, Wang Y, Wang Z, Huang H, Sun Y, Huang Y, Shen D, Feng D, Sun Z, Cho J H, Zeng C, Zhang Z 2020 Phys. Rev. B 102 155103Google Scholar

    [89]

    Giefers H, Nicol M 2006 J. Alloys Compd. 422 132Google Scholar

    [90]

    Kulshreshtha S K, Raj P 1981 J. Phys. F: Met. Phys. 11 281Google Scholar

    [91]

    Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 Appl. Phys. Lett. 107 182401Google Scholar

    [92]

    Deng H, Chen Z, Wołoś A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I V, Borysiuk J, Heider T, Pluciński Ł, Park K, Georgescu A B, Cano J, Krusin-Elbaum L 2020 Nat. Phys. 17 36Google Scholar

    [93]

    Chen R, Li S, Sun H P, Zhao Y, Lu H Z, Xie X C 2020 arXiv 2005.14074

    [94]

    Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J 2020 Nat. Sci. Rev. 7 1280Google Scholar

    [95]

    Xie H, Wang D, Cai Z, Chen B, Guo J, Naveed M, Zhang S, Zhang M, Wang X, Fei F, Zhang H, Song F 2020 Appl. Phys.Lett. 116 221902Google Scholar

    [96]

    Jo N H, Wang L L, Slager R-J, Yan J, Wu Y, Lee K, Schrunk B, Vishwanath A, Kaminski A 2020 Phys. Rev. B 102 045130Google Scholar

    [97]

    Tian S, Gao S, Nie S, Qian Y, Gong C, Fu Y, Li H, Fan W, Zhang P, Kondo T, Shin S, Adell J, Fedderwitz H, Ding H, Wang Z, Qian T, Lei H 2020 Phys. Rev. B 102 035144Google Scholar

    [98]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [99]

    Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [100]

    Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J, Bernevig B A 2016 Phys. Rev. Lett. 117 236401Google Scholar

    [101]

    Shen J, Yao Q, Zeng Q, Sun H, Xi X, Wu G, Wang W, Shen B, Liu Q, Liu E 2020 Phys. Rev. Lett. 125 086602Google Scholar

    [102]

    Kiyohara N, Tomita T, Nakatsuji S 2016 Phys. Rev. Appl. 5 064009Google Scholar

    [103]

    Goswami P, Pixley J H, Das Sarma S 2015 Phys. Rev. B 92 075205Google Scholar

    [104]

    Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B 2016 Nat. Commun. 7 11615Google Scholar

    [105]

    Reis R D D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [106]

    Schumann T, Goyal M, Kealhofer D A, Stemmer S 2017 Phys. Rev. B 95 241113Google Scholar

    [107]

    Breunig O, Wang Z, Taskin A A, Lux J, Rosch A, Ando Y 2017 Nat. Commun. 8 15545Google Scholar

    [108]

    Zhang H, Li H, Wang H, Cheng G, He H, Wang J 2018 Appl. Phys. Lett. 113 113503Google Scholar

    [109]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 e1806622Google Scholar

    [110]

    Xiao D, Yao Y, Fang Z, Niu Q 2006 Phys. Rev. Lett. 97 026603Google Scholar

    [111]

    Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S 2017 Nat. Phys. 13 1085Google Scholar

    [112]

    Li X, Xu L, Ding L, Wang J, Shen M, Lu X, Zhu Z, Behnia K 2017 Phys. Rev. Lett. 119 056601Google Scholar

    [113]

    Wuttke C, Caglieris F, Sykora S, Scaravaggi F, Wolter A U B, Manna K, Süss V, Shekhar C, Felser C, Büchner B, Hess C 2019 Phys. Rev. B 100 085111Google Scholar

    [114]

    Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys. Condens. Matter 23 112205Google Scholar

    [115]

    Li H, Ding B, Chen J, Li Z, Hou Z, Liu E, Zhang H, Xi X, Wu G, Wang W 2019 Appl. Phys. Lett. 114 192408Google Scholar

    [116]

    O'Neill C D, Wills A S, Huxley A D 2019 Phys. Rev. B 100 174420Google Scholar

    [117]

    Wang Q, Yin Q, Lei H 2020 Chin. Phys. B 29 017101Google Scholar

    [118]

    Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144Google Scholar

    [119]

    Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M, Du H 2021 Nat. Sci. Rev. 8 nwaa200Google Scholar

  • [1] 朱庞栋, 王长昊, 王如志. 节线半金属AlB2水环境下发生吸附后拓扑表面态变化. 物理学报, 2024, 73(12): 127101. doi: 10.7498/aps.73.20240404
    [2] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] 易恩魁, 王彬, 沈韩, 沈冰. 轴子拓扑绝缘体候选材料层状${\bf{Eu}}_{ 1- x}{\bf{Ca}}_{ x}{\bf{In}}_{\bf2}{\bf{As}}_{\bf2}$的物性研究. 物理学报, 2021, 70(12): 127502. doi: 10.7498/aps.70.20210042
    [5] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [6] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [7] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [8] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [9] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [10] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [11] 韦博元, 步海军, 张帅, 宋凤麒. 拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 物理学报, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [12] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [13] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [14] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [15] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [16] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [17] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [18] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [19] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [20] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
计量
  • 文章访问数:  11396
  • PDF下载量:  1020
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 修回日期:  2021-02-11
  • 上网日期:  2021-06-18
  • 刊出日期:  2021-06-20

/

返回文章
返回