搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维材料的自旋-轨道矩研究进展

何聪丽 许洪军 汤建 王潇 魏晋武 申世鹏 陈庆强 邵启明 于国强 张广宇 王守国

引用本文:
Citation:

基于二维材料的自旋-轨道矩研究进展

何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国

Research progress of spin-orbit torques based on two-dimensional materials

He Cong-Li, Xu Hong-Jun, Tang Jian, Wang Xiao, Wei Jin-Wu, Shen Shi-Peng, Chen Qing-Qiang, Shao Qi-Ming, Yu Guo-Qiang, Zhang Guang-Yu, Wang Shou-Guo
PDF
HTML
导出引用
  • 在具有自旋-轨道耦合效应的材料中, 电荷流能够诱导产生垂直于电流方向的纯自旋流, 当其注入近邻的磁性层时, 会对其磁矩产生自旋-轨道矩. 自旋-轨道矩能够快速、高效地翻转磁矩, 为开发高性能的自旋电子器件提供了一种极佳的磁矩操控方式. 二维材料由于具有很多的优点, 如种类丰富、具有多样化的晶体结构和对称性、能够克服晶格失配形成高质量的异质结、具有强自旋-轨道耦合、电导率可调等, 为研究自旋-轨道矩提供了独特的平台, 因此引起了人们的广泛关注. 本文涵盖了近年来与二维材料及其异质结构中自旋-轨道矩研究相关的最新进展, 主要包括了基于非磁性二维材料(如MoS2, WSe2, WS2, WTe2, TaTe2, MoTe2, NbSe2, PtTe2, TaS2等)和磁性二维材料(如Fe3GeTe2, Cr2Ge2Te6等)的异质结中自旋-轨道矩的产生、表征和对磁矩的操控等. 最后指出了目前研究中尚未解决的问题与挑战.
    The spin-orbit torque generated by charge current in a strong spin-orbit coupling material provides a fast and efficient way to manipulate the magnetic moment in adjacent magnetic layers, which is expected to be used for developing low-power, high-performance spintronic devices. Two-dimensional materials have attracted great attention, for example, they have abundant species, a variety of crystal structures and symmetries, good adjustability of spin-orbit coupling strength and conductivity, and good ability to overcome the lattice mismatch to form high-quality heterojunctions, thereby providing a unique platform for studying the spin-orbit torques. This paper covers the latest research progress of spin-orbital torques in two-dimensional materials and their heterostructures, including their generations, characteristics, and magnetization manipulations in the heterostructures based on non-magnetic two-dimensional materials (such as MoS2, WSe2, WS2, WTe2, TaTe2, MoTe2, NbSe2, PtTe2, TaS2, etc.) and magnetic two-dimensional materials (such as Fe3GeTe2, Cr2Ge2Te6, etc.). Finally, some problems remaining to be solved and challenges are pointed out, and the possible research directions and potential applications of two-dimensional material spin-orbit torque are also proposed.
      通信作者: 王守国, sgwang@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51901025, 60573172, 51625101)、北京市自然科学基金重点项目(批准号: Z190007, Z190009)、中央高校基本科研业务费专项资金(批准号: 310421101)和香港研究资助局(批准号: ECS26200520)资助的课题
      Corresponding author: Wang Shou-Guo, sgwang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901025, 60573172, 51625101), the Key Program of the Natural Science Foundation of Beijing, China (Grant Nos. Z190007, Z190009), the Fundamental Research Funds for the Central Universities, China (Grant No. 310421101), and the Hong Kong Research Grants Council, China (Grant No. ECS26200520)
    [1]

    Kent A D, Worledge D C 2015 Nat. Nanotechnol. 10 187Google Scholar

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [3]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [4]

    Qiu X P, Shi Z, Fan W J, Zhou S M, Yang H 2018 Adv. Mater. 30 1705699Google Scholar

    [5]

    Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91Google Scholar

    [6]

    Li Y, Edmonds K W, Liu X, Zheng H, Wang K 2019 Advanced Quantum Technologies 2 1800052Google Scholar

    [7]

    Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, Pan F 2020 Prog. Mater. Sci. DOI: 10.1016/j. pmatsci.2020.100761Google Scholar

    [8]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [9]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [10]

    Yu G Q, Upadhyaya P, Wong K L, Jiang W J, Alzate J G, Tang J S, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421Google Scholar

    [11]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [12]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 P. Natl. Acad. Sci. USA 112 10310Google Scholar

    [13]

    Qiu X P, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nat. Nanotechnol. 10 333Google Scholar

    [14]

    Lau Y C, Betto D, Rode K, Coey J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [15]

    Zhang W F, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496Google Scholar

    [16]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [17]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [18]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [19]

    An H Y, Ohno T, Kanno Y, Kageyama Y, Monnai Y, Maki H, Shi J, Ando K 2018 Sci. Adv. 4 eaar2250Google Scholar

    [20]

    Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M, Han X F 2019 Nat. Commun. 10 233Google Scholar

    [21]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [22]

    Fan Y B, Upadhyaya P, Kou X F, Lang M R, Takei S, Wang Z X, Tang J S, He L, Chang L T, Montazeri M, Yu G Q, Jiang W J, Nie T X, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [23]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [24]

    Wu H, Xu Y, Deng P, Pan Q J, Razavi S A, Wong K, Huang L, Dai B Q, Shao Q M, Yu G Q, Han X F, Rojas-Sanchez J C, Mangin S, Wang K L 2019 Adv. Mater. 31 1901681Google Scholar

    [25]

    Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E L, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar

    [26]

    盛宇, 张楠, 王开友, 马星桥 2018 物理学报 67 117501Google Scholar

    Sheng Y, Zhang N, Wang K Y, Ma X Q 2018 Acta Phys. Sin. 67 117501Google Scholar

    [27]

    Feng X Y, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W, Fan X L 2019 Chin. Phys. B 28 107105Google Scholar

    [28]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611Google Scholar

    [29]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527Google Scholar

    [30]

    Fukami S, Zhang C L, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [31]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [32]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [33]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162Google Scholar

    [34]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [35]

    Yu G Q, Jenkins A, Ma X, Razavi S A, He C L, Yin G, Shao Q M, He Q L, Wu H, Li W J, Jiang W J, Han X F, Li X Q, Jayich A C B, Amiri P K, Wang K L 2018 Nano Lett. 18 980Google Scholar

    [36]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [37]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [38]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [39]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv Electron. Mater. 5 1800782Google Scholar

    [40]

    Wadley P, Howells B, Zelezny J, Andrews C, Hills V, Campion R P, Novak V, Olejnik K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kunes J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [41]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [42]

    Peng S Z, Zhu D Q, Li W X, Wu H, Grutter A J, Gilbert D A, Lu J Q, Xiong D R, Cai W L, Shafer P, Wang K L, Zhao W S 2020 Nat. Electron. 3 757Google Scholar

    [43]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [44]

    He C L, Navabi A, Shao Q M, Yu G Q, Di Wu D, Zhu W H, Zheng C, Li X, He Q L, Razavi S A, Wong K L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 202404Google Scholar

    [45]

    He C L, Razavi A, Wei J W, Xu H J, Yu G Q, Wong K L, Wu H, Shen S P, Chen Q Q, Zeng Z M, Wang S G, Wang K L 2020 Appl. Phys. Lett. 117 172406Google Scholar

    [46]

    He C L, Razavi S A, Yu G Q, Ma X, Wu H, Shao Q M, Wong K L, Shen S P, Zhao Y C, Pei Y S, Chen Q Q, Li X Q, Wang S G, Wang K L 2020 Appl. Phys. Lett. 116 242407Google Scholar

    [47]

    Wei J W, He C L, Wang X, Xu H J, Liu Y Z, Guang Y, Wan C H, Feng J F, Yu G Q, Han X F 2020 Phys. Rev. Appl. 13 034041Google Scholar

    [48]

    Han W 2016 Apl. Mater. 4 032401Google Scholar

    [49]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [50]

    Li X, Dong B, Sun X, Wang H, Yang T, Yu G, Vitto Han Z 2019 J. Semicond. 40 081508Google Scholar

    [51]

    Yang S X, Zhang T L, Jiang C B 2020 Adv. Sci. 2002488Google Scholar

    [52]

    Liu Y T, Shao A M 2020 ACS Nano 14 9389Google Scholar

    [53]

    Han W, Otani Y, Maekawa S 2018 Npj Quant. Mater. 3 27Google Scholar

    [54]

    Yan B H, Felser C 2017 Annu. Rev. Conden. Matter Phys. 8 337Google Scholar

    [55]

    Song P, Hsu C H, Vignale G, Zhao M, Liu J W, Deng Y J, Fu W, Liu Y P, Zhang Y B, Lin H, Pereira V M, Loh K P 2020 Nat. Mater. 19 292Google Scholar

    [56]

    Safeer C K, Ontoso N, Ingla-Aynes J, Herling F, Pham V T, Kurzmann A, Ensslin K, Chuvilin A, Robredo I, Vergniory M G, de Juan F, Hueso L E, Calvo M R, Casanova F 2019 Nano Lett. 19 8758Google Scholar

    [57]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [58]

    MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar

    [59]

    Zhang W, Sklenar J, Hsu B, Jiang W J, Jungfleisch M B, Xiao J, Fradin F Y, Liu Y H, Pearson J E, Ketterson J B, Yang Z, Hoffmann A 2016 Apl. Mater. 4 032302Google Scholar

    [60]

    Shao Q M, Yu G Q, Lan Y W, Shi Y M, Li M Y, Zheng C, Zhu X D, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [61]

    Lv W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [62]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat Nanotech. 14 945Google Scholar

    [63]

    Li P, Wu W K, Wen Y, Zhang C H, Zhang J W, Zhang S F, Yu Z M, Yang S Y A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990Google Scholar

    [64]

    Stiehl G M, MacNeill D, Sivadas N, El Baggari I, Guimaraes M H D, Reynolds N D, Kourkoutis L F, Fennie C J, Buhrman R A, Ralph D C 2019 ACS Nano 13 2599Google Scholar

    [65]

    Stiehl G M, Li R F, Gupta V, El Baggari I, Jiang S W, Xie H C, Kourkoutis L F, Mak K F, Shan J, Buhrman R A, Ralph D C 2019 Phys. Rev. B 100 184402Google Scholar

    [66]

    Guimaraes M H D, Stiehl G M, MacNeill D, Reynolds N D, Ralph D C 2018 Nano Lett. 18 1311Google Scholar

    [67]

    MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [68]

    Xu H J, Wei J W, Zhou H G, Feng J F, Xu T, Du H F, He C L, Huang Y, Zhang J W, Liu Y Z, Wu H C, Guo C Y, Wang X, Guang Y, Wei H X, Peng Y, Jiang W J, Yu G Q, Han X F 2020 Adv. Mater. 32 2000513Google Scholar

    [69]

    Husain S, Chen X, Gupta R, Behera N, Kumar P, Edvinsson T, Garcia-Sanchez F, Brucas R, Chaudhary S, Sanyal B, Svedlindh P, Kumar A 2020 Nano Lett. 20 6372Google Scholar

    [70]

    Liang S H, Shi S Y, Hsu C H, Cai K M, Wang Y, He P, Wu Y, Pereira V M, Yang H 2020 Adv. Mater. 32 2002799Google Scholar

    [71]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [72]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [73]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [74]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [75]

    Zhang W, Wong P K J, Zhu R, Wee A T S 2019 Info.Mat. 1 479Google Scholar

    [76]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [77]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [78]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [79]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [80]

    Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z A, Wei Z M, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [81]

    Han M-G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D, Zhu Y 2019 Nano Lett. 19 7859Google Scholar

    [82]

    Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, Wang W 2020 Nano Lett. 20 868Google Scholar

    [83]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [84]

    Park T E, Peng L C, Liang J H, Hallal A, Yasin F S, Zhang X C, Kim S J, Song K M, Kim K, Weigand M, Schuetz G, Finizio S, Raabe J, Woo S 2019 arXiv: 1907.01425v4

    [85]

    Yang M, Li Q, Chopdekar R V, Dhall R, Turner J, Carlstrom J D, Ophus C, Klewe C, Shafer P, NDiaye A T, Choi J W, Chen G, Wu Y Z, Hwang C, Wang F, Qiu Z Q 2020 Sci. Adv. 6 eabb5157Google Scholar

    [86]

    Gao Y, Yin Q W, Wang Q, Li Z L, Cai J W, Zhao T Y, Lei H C, Wang S G, Zhang Y, Shen B G 2020 Adv. Mater. 32 2005228Google Scholar

    [87]

    Wang H, Wang C, Li Z A, Tian H, Shi Y, Yang H, Li J 2020 Appl. Phys. Lett. 116 192403Google Scholar

    [88]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X, Han Z, Zhang Z D, Zhang G Y, Yu G, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [89]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [90]

    Zhang K, Han S, Lee Y, Coak M J, Kim J, Hwang I, Son S, Shin J, Lim M, Jo D, Kim K, Kim D, Lee H W, Park J G 2020 Adv. Mater. 33 2004110

    [91]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [92]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [93]

    Shao Y, Lv W X, Guo J J, Qi B T, Lv W M, Li S K, Guo G H, Zeng Z M 2020 Appl. Phys. Lett. 116Google Scholar

    [94]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421Google Scholar

    [95]

    Barre E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H S P, Heinz T F 2019 Nano Lett. 19 770Google Scholar

    [96]

    Lee J, Wang Z F, Xie H C, Mak K F, Shan J 2017 Nat. Mater. 16 887Google Scholar

    [97]

    Hung T Y T, Rustagi A, Zhang S J, Upadhyaya P, Chen Z H 2020 InfoMat 2 968Google Scholar

    [98]

    Li Q, Yang M M, Gong C, Chopdekar R V, N'Diaye A T, Turner J, Chen G, Schol A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C Y, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [99]

    Idzuchi H, Allcca A E L, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phys. Lett. 115 232403Google Scholar

    [100]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z 2020 Adv. Quant. Technol. 3 2000017Google Scholar

    [101]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [102]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Regueiro M N, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [103]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [104]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001Google Scholar

    [105]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [106]

    Li N, Wang Q Q, Shen C, Wei Z, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [107]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 Npj 2D Mater. Appl. 1 37Google Scholar

    [108]

    Wang H Y, Liu Y J, Wu P C, Hou W J, Jiang Y H, Li X H, Pandey C, Chen D D, Yang Q, Wang H T, Wei D H, Lei N, Kang W, Wen L G, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [109]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K A, Zhao W S 2020 Chin. Phys. B 29 078505Google Scholar

    [110]

    Guo Q X, Wu Y, Xu L X, Gong Y, Ou Y B, Liu Y, Li L L, Yan Y, Han G, Wang D W, Wang L H, Long S B, Zhang B W, Cao X, Yang S W, Wang X M, Huang Y Z, Liu T, Yu G H, He K, Teng J 2020 Chin. Phys. Lett. 37 057301Google Scholar

  • 图 1  MoS2/Py异质结中ST-FMR信号的对称(a)和反对称(b)振幅随外加磁场与平面夹角θ的依赖关系(插图为基于MoS2/Py异质结的ST-FMR器件光学显微镜图)[59]; (c) MX2/CoFeB 异质结的SOT测量装置示意图; (d) 二次谐波方法测得二阶霍尔电阻与φ的函数关系, 外加磁场为100 Oe (1 Oe = 103/(4π) A/m)[60]; (e) WS2/Py双层器件几何结构示意图, 其中Vg通过SiO2介质层施加; (f)Vg对Py和WS2/Py双层的转矩比$ {\tau }_{\rm{FL}}/{\tau }_{\rm{DL}} $调控特性[61]

    Fig. 1.  Out-of-plane (OOP) angular (the applied field is described by the polar angle) dependence of symmetric (a) and antisymmetric (b) components of the ST-FMR signal based on MoS2/Py heterostructure (the inset is photo image of ST-FMR device)[59]; (c) measurement setup of SOT measurements for the MX2/CoFeB bilayer; (d) second-harmonic Hall resistance as a function of φ with an external magnetic field 100 Oe applied[60]; (e) schematic of the WS2/Py bilayer device geometry, where Vg was applied through the SiO2 dielectric layer; (f) torque ratio $ {\tau }_{\rm{FL}}/{\tau }_{\rm{DL}} $ dependence of Vg for Py and WS2/Py bilayer[61].

    图 2  (a) WTe2/Py异质结样品几何结构示意图; (b) WTe2/Py器件的对称和反对称ST-FMR信号与面内磁场角度的依赖关系, 其中电流平行于a[58]; (c) 由MOKE图像捕捉到的电流驱动磁矩翻转过程[62]; (d) 自旋电导率随MoTe2厚度的变化关系[65]; (e) MoTe2单斜1T′相的晶体结构和20层MoTe2薄膜的能带结构[70]; (f) PtTe2/Py器件ST-FMR测量SOT效率ξSOT和自旋霍尔电导率$ {\sigma }_{\rm{s}} $的厚度依赖性; (g) PtTe2/Au/CoTb结构和PtTe2中电流产生的SOT的示意图; (h)在不同的面内磁场下, PtTe2中电流产生的SOT驱动具有垂直磁各向异性的CoTb层磁矩翻转[68]

    Fig. 2.  (a) Schematic of the bilayer WTe2/Py sample geometry; (b) symmetric and antisymmetric ST-FMR resonance components for a WTe2 (5.5 nm)/Py (6 nm) device as a function of in-plane magnetic-field angle, with current applied parallel to the a-axis[58]; (c) switching process captured by MOKE images[62]; (d) spin conductivities as a function of the thickness of MoTe2, where σS stands for the conventional damping-like torque, σB stands for the out-of-plane damping-like torque, and σT stands for the out-of-plane field-like torque[65]; (e) crystal structure of the monoclinic 1T′ phase of MoTe2 and band structure of a MoTe2 slab with 20 monolayers[70]; (f) thickness dependence of ξSOT and spin Hall conductivity σs of PtTe2/Py measured by ST-FMR; (g) schematic layout for PtTe2/Au/CoTb stack and the SOT generated by the majority of current flowing in PtTe2; (h) current-induced switching of the CoTb layer by SOT from PtTe2 under different in-plane field[68].

    图 3  FGT/Pt双层器件的示意图(a)和SOT驱动的垂直磁矩翻转(b)[88]; (c) SOT驱动FGT磁矩翻转有效翻转电流随施加面内磁场的变化[89]; (d) 基于FGT的磁存储器件原理图及电流诱导的矫顽场大幅度降低, 从而降低写入电流密度[90]; (e) 基于CGT/Ta异质结Hall器件的原理图和4 K温度下施加流过Ta的电流Idc和平面内磁场Hx组合时的磁矩mz相图[91]; (f) FGT/WTe2双层结构的原子示意图和不同电流密度下FGT/WTe2 霍尔条在10 K垂直磁场下的反常霍尔电阻[92]

    Fig. 3.  Schematic view (a) and SOT-driven perpendicular magnetization switching (b) in the FGT/Pt bilayer device[88]; (c) current-induced magnetization switching of FGT and effective switching current as a function of applied in-plane magnetic field[89]; (d) schematic of FGT-based magnetic memory device and the current-induced substantial reduction of the coercive field and then reduction of the write current[90]; (e) schematic of a fabricated Hall bar device from a CGT/Ta heterostructure and phase diagram of mz for applied combinations of Idc and Hx at 4 K[91]; (f) atomic schematic view of FGT/WTe2 bilayer structure and anomalous Hall resistance of the FGT/WTe2 Hall bar under a perpendicular magnetic field at 10 K with various current densities[93].

    表 1  已报道的实验研究工作中TMD材料的晶体结构、制备方法、TMD/FM异质结中的SOT的表征方法以及自旋霍尔电导

    Table 1.  Crystal structure, preparation method, method for SOT measurement of the TMD/FM heterostructure, and spin Hall conductance of TMD materials in the previous studies.

    TMD材料空间群制备方法表征方法自旋霍尔电导$/[{10}^{3}({\hbar /2{\rm{e}}} )$ (Ω·m)–1]文献
    MoS2P6/mmcCVDSHH$ {\sigma }_{\rm{A}}= $ 2.9[60]
    WSe2P6/mmcCVDSHH$ {\sigma }_{\rm{A}}= $ 5.5[60]
    WS2P6/mmcCVDSHH$ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $ observed[61]
    WTe2Pmn21ExfoliationST-FMR/SHH$ {\sigma }_{\rm{A}}= $ 9 ± 3, $ {\sigma }_{\rm{S}}= $ 8 ± 2, $ {\sigma }_{\rm{B}}= $ 3.6 ± 0.8[58]
    WTe2Pmn21ExfoliationST-FMR/SHH$ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $, ${\sigma }_{\rm B}$ observed[62]
    TaTe2C2/mExfoliationST-FMR/SHH$ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $, ${\sigma }_{\rm B}$ observed[64]
    MoTe2P21/mExfoliationST-FMR${\sigma }_{\rm{S} }=4.4 —8.0,$ ${\sigma }_{\rm{B} }=0.04—1.6,$ ${\sigma }_{\rm{T} }=0.026—1.0$[65]
    NbSe2P63/mmcExfoliationST-FMR${\sigma }_{\rm{A} }=0— 40,$ ${\sigma }_{\rm{S} }=0— 13,$ ${\sigma }_{\rm{T} }=- 2—3.5$[66]
    PtTe2CVDST-FMR${\sigma }_{\rm{S} }=0.20—1.6\times {10}^{2}$[68]
    TaS2Ion-beam sputteringST-FMR/SHH$ {\sigma }_{\rm{S}}=14.9\times {10}^{2} $[69]
    下载: 导出CSV
  • [1]

    Kent A D, Worledge D C 2015 Nat. Nanotechnol. 10 187Google Scholar

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [3]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [4]

    Qiu X P, Shi Z, Fan W J, Zhou S M, Yang H 2018 Adv. Mater. 30 1705699Google Scholar

    [5]

    Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91Google Scholar

    [6]

    Li Y, Edmonds K W, Liu X, Zheng H, Wang K 2019 Advanced Quantum Technologies 2 1800052Google Scholar

    [7]

    Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, Pan F 2020 Prog. Mater. Sci. DOI: 10.1016/j. pmatsci.2020.100761Google Scholar

    [8]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [9]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [10]

    Yu G Q, Upadhyaya P, Wong K L, Jiang W J, Alzate J G, Tang J S, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421Google Scholar

    [11]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [12]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 P. Natl. Acad. Sci. USA 112 10310Google Scholar

    [13]

    Qiu X P, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nat. Nanotechnol. 10 333Google Scholar

    [14]

    Lau Y C, Betto D, Rode K, Coey J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [15]

    Zhang W F, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496Google Scholar

    [16]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [17]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [18]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [19]

    An H Y, Ohno T, Kanno Y, Kageyama Y, Monnai Y, Maki H, Shi J, Ando K 2018 Sci. Adv. 4 eaar2250Google Scholar

    [20]

    Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M, Han X F 2019 Nat. Commun. 10 233Google Scholar

    [21]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [22]

    Fan Y B, Upadhyaya P, Kou X F, Lang M R, Takei S, Wang Z X, Tang J S, He L, Chang L T, Montazeri M, Yu G Q, Jiang W J, Nie T X, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [23]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [24]

    Wu H, Xu Y, Deng P, Pan Q J, Razavi S A, Wong K, Huang L, Dai B Q, Shao Q M, Yu G Q, Han X F, Rojas-Sanchez J C, Mangin S, Wang K L 2019 Adv. Mater. 31 1901681Google Scholar

    [25]

    Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E L, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar

    [26]

    盛宇, 张楠, 王开友, 马星桥 2018 物理学报 67 117501Google Scholar

    Sheng Y, Zhang N, Wang K Y, Ma X Q 2018 Acta Phys. Sin. 67 117501Google Scholar

    [27]

    Feng X Y, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W, Fan X L 2019 Chin. Phys. B 28 107105Google Scholar

    [28]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611Google Scholar

    [29]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527Google Scholar

    [30]

    Fukami S, Zhang C L, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [31]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [32]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [33]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162Google Scholar

    [34]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [35]

    Yu G Q, Jenkins A, Ma X, Razavi S A, He C L, Yin G, Shao Q M, He Q L, Wu H, Li W J, Jiang W J, Han X F, Li X Q, Jayich A C B, Amiri P K, Wang K L 2018 Nano Lett. 18 980Google Scholar

    [36]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [37]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [38]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [39]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv Electron. Mater. 5 1800782Google Scholar

    [40]

    Wadley P, Howells B, Zelezny J, Andrews C, Hills V, Campion R P, Novak V, Olejnik K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kunes J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [41]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [42]

    Peng S Z, Zhu D Q, Li W X, Wu H, Grutter A J, Gilbert D A, Lu J Q, Xiong D R, Cai W L, Shafer P, Wang K L, Zhao W S 2020 Nat. Electron. 3 757Google Scholar

    [43]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [44]

    He C L, Navabi A, Shao Q M, Yu G Q, Di Wu D, Zhu W H, Zheng C, Li X, He Q L, Razavi S A, Wong K L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 202404Google Scholar

    [45]

    He C L, Razavi A, Wei J W, Xu H J, Yu G Q, Wong K L, Wu H, Shen S P, Chen Q Q, Zeng Z M, Wang S G, Wang K L 2020 Appl. Phys. Lett. 117 172406Google Scholar

    [46]

    He C L, Razavi S A, Yu G Q, Ma X, Wu H, Shao Q M, Wong K L, Shen S P, Zhao Y C, Pei Y S, Chen Q Q, Li X Q, Wang S G, Wang K L 2020 Appl. Phys. Lett. 116 242407Google Scholar

    [47]

    Wei J W, He C L, Wang X, Xu H J, Liu Y Z, Guang Y, Wan C H, Feng J F, Yu G Q, Han X F 2020 Phys. Rev. Appl. 13 034041Google Scholar

    [48]

    Han W 2016 Apl. Mater. 4 032401Google Scholar

    [49]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [50]

    Li X, Dong B, Sun X, Wang H, Yang T, Yu G, Vitto Han Z 2019 J. Semicond. 40 081508Google Scholar

    [51]

    Yang S X, Zhang T L, Jiang C B 2020 Adv. Sci. 2002488Google Scholar

    [52]

    Liu Y T, Shao A M 2020 ACS Nano 14 9389Google Scholar

    [53]

    Han W, Otani Y, Maekawa S 2018 Npj Quant. Mater. 3 27Google Scholar

    [54]

    Yan B H, Felser C 2017 Annu. Rev. Conden. Matter Phys. 8 337Google Scholar

    [55]

    Song P, Hsu C H, Vignale G, Zhao M, Liu J W, Deng Y J, Fu W, Liu Y P, Zhang Y B, Lin H, Pereira V M, Loh K P 2020 Nat. Mater. 19 292Google Scholar

    [56]

    Safeer C K, Ontoso N, Ingla-Aynes J, Herling F, Pham V T, Kurzmann A, Ensslin K, Chuvilin A, Robredo I, Vergniory M G, de Juan F, Hueso L E, Calvo M R, Casanova F 2019 Nano Lett. 19 8758Google Scholar

    [57]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [58]

    MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar

    [59]

    Zhang W, Sklenar J, Hsu B, Jiang W J, Jungfleisch M B, Xiao J, Fradin F Y, Liu Y H, Pearson J E, Ketterson J B, Yang Z, Hoffmann A 2016 Apl. Mater. 4 032302Google Scholar

    [60]

    Shao Q M, Yu G Q, Lan Y W, Shi Y M, Li M Y, Zheng C, Zhu X D, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [61]

    Lv W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [62]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat Nanotech. 14 945Google Scholar

    [63]

    Li P, Wu W K, Wen Y, Zhang C H, Zhang J W, Zhang S F, Yu Z M, Yang S Y A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990Google Scholar

    [64]

    Stiehl G M, MacNeill D, Sivadas N, El Baggari I, Guimaraes M H D, Reynolds N D, Kourkoutis L F, Fennie C J, Buhrman R A, Ralph D C 2019 ACS Nano 13 2599Google Scholar

    [65]

    Stiehl G M, Li R F, Gupta V, El Baggari I, Jiang S W, Xie H C, Kourkoutis L F, Mak K F, Shan J, Buhrman R A, Ralph D C 2019 Phys. Rev. B 100 184402Google Scholar

    [66]

    Guimaraes M H D, Stiehl G M, MacNeill D, Reynolds N D, Ralph D C 2018 Nano Lett. 18 1311Google Scholar

    [67]

    MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [68]

    Xu H J, Wei J W, Zhou H G, Feng J F, Xu T, Du H F, He C L, Huang Y, Zhang J W, Liu Y Z, Wu H C, Guo C Y, Wang X, Guang Y, Wei H X, Peng Y, Jiang W J, Yu G Q, Han X F 2020 Adv. Mater. 32 2000513Google Scholar

    [69]

    Husain S, Chen X, Gupta R, Behera N, Kumar P, Edvinsson T, Garcia-Sanchez F, Brucas R, Chaudhary S, Sanyal B, Svedlindh P, Kumar A 2020 Nano Lett. 20 6372Google Scholar

    [70]

    Liang S H, Shi S Y, Hsu C H, Cai K M, Wang Y, He P, Wu Y, Pereira V M, Yang H 2020 Adv. Mater. 32 2002799Google Scholar

    [71]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [72]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [73]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [74]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [75]

    Zhang W, Wong P K J, Zhu R, Wee A T S 2019 Info.Mat. 1 479Google Scholar

    [76]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [77]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [78]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [79]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [80]

    Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z A, Wei Z M, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [81]

    Han M-G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D, Zhu Y 2019 Nano Lett. 19 7859Google Scholar

    [82]

    Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, Wang W 2020 Nano Lett. 20 868Google Scholar

    [83]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [84]

    Park T E, Peng L C, Liang J H, Hallal A, Yasin F S, Zhang X C, Kim S J, Song K M, Kim K, Weigand M, Schuetz G, Finizio S, Raabe J, Woo S 2019 arXiv: 1907.01425v4

    [85]

    Yang M, Li Q, Chopdekar R V, Dhall R, Turner J, Carlstrom J D, Ophus C, Klewe C, Shafer P, NDiaye A T, Choi J W, Chen G, Wu Y Z, Hwang C, Wang F, Qiu Z Q 2020 Sci. Adv. 6 eabb5157Google Scholar

    [86]

    Gao Y, Yin Q W, Wang Q, Li Z L, Cai J W, Zhao T Y, Lei H C, Wang S G, Zhang Y, Shen B G 2020 Adv. Mater. 32 2005228Google Scholar

    [87]

    Wang H, Wang C, Li Z A, Tian H, Shi Y, Yang H, Li J 2020 Appl. Phys. Lett. 116 192403Google Scholar

    [88]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X, Han Z, Zhang Z D, Zhang G Y, Yu G, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [89]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [90]

    Zhang K, Han S, Lee Y, Coak M J, Kim J, Hwang I, Son S, Shin J, Lim M, Jo D, Kim K, Kim D, Lee H W, Park J G 2020 Adv. Mater. 33 2004110

    [91]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [92]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [93]

    Shao Y, Lv W X, Guo J J, Qi B T, Lv W M, Li S K, Guo G H, Zeng Z M 2020 Appl. Phys. Lett. 116Google Scholar

    [94]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421Google Scholar

    [95]

    Barre E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H S P, Heinz T F 2019 Nano Lett. 19 770Google Scholar

    [96]

    Lee J, Wang Z F, Xie H C, Mak K F, Shan J 2017 Nat. Mater. 16 887Google Scholar

    [97]

    Hung T Y T, Rustagi A, Zhang S J, Upadhyaya P, Chen Z H 2020 InfoMat 2 968Google Scholar

    [98]

    Li Q, Yang M M, Gong C, Chopdekar R V, N'Diaye A T, Turner J, Chen G, Schol A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C Y, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [99]

    Idzuchi H, Allcca A E L, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phys. Lett. 115 232403Google Scholar

    [100]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z 2020 Adv. Quant. Technol. 3 2000017Google Scholar

    [101]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [102]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Regueiro M N, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [103]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [104]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001Google Scholar

    [105]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [106]

    Li N, Wang Q Q, Shen C, Wei Z, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [107]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 Npj 2D Mater. Appl. 1 37Google Scholar

    [108]

    Wang H Y, Liu Y J, Wu P C, Hou W J, Jiang Y H, Li X H, Pandey C, Chen D D, Yang Q, Wang H T, Wei D H, Lei N, Kang W, Wen L G, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [109]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K A, Zhao W S 2020 Chin. Phys. B 29 078505Google Scholar

    [110]

    Guo Q X, Wu Y, Xu L X, Gong Y, Ou Y B, Liu Y, Li L L, Yan Y, Han G, Wang D W, Wang L H, Long S B, Zhang B W, Cao X, Yang S W, Wang X M, Huang Y Z, Liu T, Yu G H, He K, Teng J 2020 Chin. Phys. Lett. 37 057301Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [3] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [4] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [5] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [6] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [7] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [8] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [9] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [10] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [11] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [12] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [13] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [14] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [15] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [16] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [17] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [18] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用. 物理学报, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  12145
  • PDF下载量:  1350
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-02
  • 修回日期:  2021-01-24
  • 上网日期:  2021-02-24
  • 刊出日期:  2021-06-20

/

返回文章
返回