[1] |
Liu Xi-Wang, Zhang Hong-Dan, Ben Shuai, Yang Shi-Dong, Ren Xin, Song Xiao-Hong, Yang Wei-Feng. Feynman path-integral strong-field dynamics calculation method. Acta Physica Sinica,
2023, 72(19): 198701.
doi: 10.7498/aps.72.20230451
|
[2] |
Pu Shi, Huang Xu-Guang. Relativistic spin hydrodynamics. Acta Physica Sinica,
2023, 72(7): 071202.
doi: 10.7498/aps.72.20230036
|
[3] |
Cui Jin-Chao, Liao Cui-Cui, Liu Shi-Xing, Mei Feng-Xiang. A method of judging a Birkhoffian to be a first integral of constrained mechanical system. Acta Physica Sinica,
2017, 66(4): 040201.
doi: 10.7498/aps.66.040201
|
[4] |
Cui Jin-Chao, Liao Cui-Cui, Zhao Zhe, Liu Shi-Xing. A simplified method of solving Birkhoffian function and Lagrangian. Acta Physica Sinica,
2016, 65(18): 180201.
doi: 10.7498/aps.65.180201
|
[5] |
Chen Ji, Feng Ye-Xin, Li Xin-Zheng, Wang En-Ge. A fully quantum description of the free-energy in high pressure hydrogen. Acta Physica Sinica,
2015, 64(18): 183101.
doi: 10.7498/aps.64.183101
|
[6] |
Song Duan. Simplification of Santillis second method of constructing Birkhoffian functions. Acta Physica Sinica,
2014, 63(14): 144501.
doi: 10.7498/aps.63.144501
|
[7] |
Zhang Yi. Symmetry of Birkhoffians and conserved quantity for a relativistic mechanical system. Acta Physica Sinica,
2012, 61(21): 214501.
doi: 10.7498/aps.61.214501
|
[8] |
Li Yan-Min, Mei Feng-Xiang. Integral methods for the generalized Birkhoff equations. Acta Physica Sinica,
2010, 59(9): 5930-5933.
doi: 10.7498/aps.59.5930
|
[9] |
Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun. Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica,
2009, 58(1): 28-33.
doi: 10.7498/aps.58.28
|
[10] |
Dong Quan-Lin, Wang Kun, Zhang Chun-Xi, Liu Bin. An integral solution for the relative-rotation dynamic equation of a cylinder. Acta Physica Sinica,
2004, 53(2): 337-342.
doi: 10.7498/aps.53.337
|
[11] |
Jia Li-Qun. A theory of relativistic analytical statics of rotational systems. Acta Physica Sinica,
2003, 52(5): 1039-1043.
doi: 10.7498/aps.52.1039
|
[12] |
Fu Jing-Li, Chen Li-Qun, Xue Yun. Stability for the equilibrium state of rotational relativistic Birkhoffian systems. Acta Physica Sinica,
2003, 52(2): 256-261.
doi: 10.7498/aps.52.256
|
[13] |
Fu Jing-Li, Chen Li-Qun, Xue Yun, Luo Shao-Kai. Stability of the equilibrium state in relativistic Birkhoff systems*. Acta Physica Sinica,
2002, 51(12): 2683-2689.
doi: 10.7498/aps.51.2683
|
[14] |
Luo Shao-Kai, Lu Yi-Bing, Zhou Qiang, Wang Ying-De, Oyang Shi. . Acta Physica Sinica,
2002, 51(9): 1913-1917.
doi: 10.7498/aps.51.1913
|
[15] |
QIAO YONG-FEN, LI REN-JIE, MENG JUN. LINDEL?F'S EQUATIONS OF NONHOLONOMIC ROTATIONAL RELATIVISTIC SYSTEMS. Acta Physica Sinica,
2001, 50(9): 1637-1642.
doi: 10.7498/aps.50.1637
|
[16] |
FU JING-LI, CHEN LI-QUN, LUO SHAO-KAI, CHEN XIANG-WEI, WANG XIN-MIN. STUDY ON DYNAMICS OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica,
2001, 50(12): 2289-2295.
doi: 10.7498/aps.50.2289
|
[17] |
LUO SHAO-KAI, FU JING-LI, CHEN XIANG-WEI. BASIC THEORY OF RELATIVISTIC BIRKHOFFIAN DYNAMICS OF ROTATIONAL SYSTEM. Acta Physica Sinica,
2001, 50(3): 383-389.
doi: 10.7498/aps.50.383
|
[18] |
LUO SHAO-KAI, GUO YONG-XIN, CHEN XIANG-WEI. INTEGRATION THEORY OF THE DYNAMICS OF A ROTATIONAL RELATIVISTIC SYSTEM. Acta Physica Sinica,
2001, 50(11): 2053-2058.
doi: 10.7498/aps.50.2053
|
[19] |
FANG JIAN-HUI. RELATIVISTIC DYNAMIC EQUATION AND VARIATIONAL PRINCIPLE FOR ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica,
2000, 49(6): 1028-1030.
doi: 10.7498/aps.49.1028
|
[20] |
Xu Hui-min. RELATIVISTIC MECHANICS (SPECIAL) IS DERIVED FROM
THE RELATIVITY PRINCIPLE OF MECHANICS. Acta Physica Sinica,
1956, 12(6): 651-654.
doi: 10.7498/aps.12.651
|