-
A novel approach to achieve a large-orbit electron beam is demonstrated using a gradually-changing reversal magnetic field. On the basis of analyzing the general regularities of electron movement and various factors which lead to eccentricity and velocity spread in the gradually-changing reversal magnetic field, we design a large-orbit electron gun. Different from the traditional three-step method, our design does not pursuit the formation of thin tubular electron beam and the utilization of mutation reversal magnetic field, which reduces the difficulties in structure complexity and tube-making process. In addition, the cathode emission band can be placed in the axial magnetic field before the magnetic reversal point where its magnitude decreases gradually, by controlling the angular momentum difference between every trajectory starting points and using the offset effect of various unfavorable factors to reduce eccentricity and velocity spread. The simulation results are consistent with the theoretical analyses, which shows that the beam quality can be improved remarkably by fine-tuning electromagnetic fields, confirms that the efficiency and the applicability of the adjusting method we proposed, and provides a new technical way to obtain a high-quality large-orbit electron beam for high-efficiency large-orbit millimeter-wave devices.
-
Keywords:
- gradually-changing reversal magnetic field /
- large-orbit electron gun /
- eccentricity /
- velocity spread
[1] Yokoo K, Suzuki T, Razeghi M, Sato N, Ono S 1988 Int. J. Electron. 65 645
[2] Ishihara T, Tadano H, Shimawaki H, Sagae K, Sato N, Yokoo K 1996 IEEE Trans. Electron Dev. 43 827
[3] [4] [5] Ishihara T, Sagae K, Sato N, Shimawaki H, Yokoo K 1999 IEEE Trans. Electron Dev. 46 798
[6] McDermott D B, Hirata Y, Dressman L J, Gallagher D A, Luhmann N C 2000 IEEE Trans. Plasma Sci. 28 953
[7] [8] Harriet S B, McDermott D B, Gallagher D A, Luhmann N C 2002 IEEE Trans. Plasma Sci. 30 909
[9] [10] [11] Lau Y Y, Barnett L R 1982 Int. J. Electron. 53 693
[12] [13] Sabchevski S, Idehara T, Glyavin M, Mitsudo S, Ogawa I, Ohashi K, Kobayashi H 2001 Vacuum 62 133
[14] Lawson W, Destler W W, Fernandez A 1996 IEEE Trans. Electron Dev. 43 1021
[15] [16] Idehara T, Ogawa I, Mitsudo S, Iwata Y, Watanabe S, Itakura Y, Ohashi K, Kobayashi H, Yokoyama T, Zapevalov V, Glyavin M, Kuftin A, Malygin O, Sabchevski S 2005 Vacuum 77 539
[17] [18] Kulagin O P, Yeryomka V D 2002 IEEE Trans. Plasma Sci. 30 2107
[19] [20] [21] Yu S, Li H F, Xie Z L, Luo Y 2000 Acta Phys. Sin. 49 2455 (in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2000 物理学报 49 2455]
[22] [23] Yu S, Li H F, Xie Z L, Luo Y 2001 Acta Phys. Sin. 50 1979(in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2001 物理学报 50 1979]
[24] [25] Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2002 Appl. Phys. Lett. 80 3703
[26] Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2004 Appl. Phys. Lett. 84 1994
[27] [28] Sabchevski S, Idehara T, Ogawa I, Glyavin M, Mitsudo S 2000 Int. J. Infrared Millimeter Waves 21 1191
[29] [30] Gallagher D A, Barsanti M, Scafuri F, Armstrong C 2000 IEEE Trans. Plasma Sci. 28 695
[31] [32] Baird J M, Lawson W 1986 Int. J. Electron. 61 953
[33] [34] [35] Scheitrum G P, Symons R S, True R B 1989 IEEE IDEM 89 743
[36] [37] Rhee M J, Destler W W 1974 Phys. Fluids 17 1574
[38] Destler W W, Rhee M J 1977 Phys. Fluids 20 1582
[39] -
[1] Yokoo K, Suzuki T, Razeghi M, Sato N, Ono S 1988 Int. J. Electron. 65 645
[2] Ishihara T, Tadano H, Shimawaki H, Sagae K, Sato N, Yokoo K 1996 IEEE Trans. Electron Dev. 43 827
[3] [4] [5] Ishihara T, Sagae K, Sato N, Shimawaki H, Yokoo K 1999 IEEE Trans. Electron Dev. 46 798
[6] McDermott D B, Hirata Y, Dressman L J, Gallagher D A, Luhmann N C 2000 IEEE Trans. Plasma Sci. 28 953
[7] [8] Harriet S B, McDermott D B, Gallagher D A, Luhmann N C 2002 IEEE Trans. Plasma Sci. 30 909
[9] [10] [11] Lau Y Y, Barnett L R 1982 Int. J. Electron. 53 693
[12] [13] Sabchevski S, Idehara T, Glyavin M, Mitsudo S, Ogawa I, Ohashi K, Kobayashi H 2001 Vacuum 62 133
[14] Lawson W, Destler W W, Fernandez A 1996 IEEE Trans. Electron Dev. 43 1021
[15] [16] Idehara T, Ogawa I, Mitsudo S, Iwata Y, Watanabe S, Itakura Y, Ohashi K, Kobayashi H, Yokoyama T, Zapevalov V, Glyavin M, Kuftin A, Malygin O, Sabchevski S 2005 Vacuum 77 539
[17] [18] Kulagin O P, Yeryomka V D 2002 IEEE Trans. Plasma Sci. 30 2107
[19] [20] [21] Yu S, Li H F, Xie Z L, Luo Y 2000 Acta Phys. Sin. 49 2455 (in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2000 物理学报 49 2455]
[22] [23] Yu S, Li H F, Xie Z L, Luo Y 2001 Acta Phys. Sin. 50 1979(in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2001 物理学报 50 1979]
[24] [25] Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2002 Appl. Phys. Lett. 80 3703
[26] Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2004 Appl. Phys. Lett. 84 1994
[27] [28] Sabchevski S, Idehara T, Ogawa I, Glyavin M, Mitsudo S 2000 Int. J. Infrared Millimeter Waves 21 1191
[29] [30] Gallagher D A, Barsanti M, Scafuri F, Armstrong C 2000 IEEE Trans. Plasma Sci. 28 695
[31] [32] Baird J M, Lawson W 1986 Int. J. Electron. 61 953
[33] [34] [35] Scheitrum G P, Symons R S, True R B 1989 IEEE IDEM 89 743
[36] [37] Rhee M J, Destler W W 1974 Phys. Fluids 17 1574
[38] Destler W W, Rhee M J 1977 Phys. Fluids 20 1582
[39]
Catalog
Metrics
- Abstract views: 7288
- PDF Downloads: 718
- Cited By: 0