Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mode properties of elliptical dielectric waveguide with nested eccentric hollow cylinder coated with graphene

Li Hui-Hui Xue Wen-Rui Li Ning Du Yi-Da Li Chang-Yong

Citation:

Mode properties of elliptical dielectric waveguide with nested eccentric hollow cylinder coated with graphene

Li Hui-Hui, Xue Wen-Rui, Li Ning, Du Yi-Da, Li Chang-Yong
PDF
HTML
Get Citation
  • An elliptical dielectric nanowire waveguide with a nested eccentric hollow cylinder is designed, the inner surface and the outer surface of the waveguide are both coated with graphene. The transmission characteristics of the three lowest order modes supported by the waveguide, i.e. the field distribution, the real part of the effective refractive index, the propagation length, and the quality factor, are obtained by multipole method. The results show that the three lowest order modes of the waveguide can be synthesized by the lowest order modes supported by a single cylinder and an elliptic cylinder coated with graphene. With the increase of the radius of the embedded cylinder, the three evaluation indexes of the waveguide increase slightly. The change of the semi major axis of the ellipse will slightly increase the real part of the effective refractive index, propagation length and quality factor of Mode 0 and Mode 1, while Mode2 will slightly decrease. When $a = {{b}} = 170\;{\rm{nm}}$, the performance of the circular nested circular waveguide becomes slightly worse than that of the structure in this paper. With the decrease of the semi minor axis of the ellipse, the real part of the effective refractive index, propagation length and quality factor for each of the three modes increase to a certain extent, and have the greatest impact on Mode 1. When ${{b}} = {{a}} = 190\;{\rm{nm}}$, the transmission performance of the circular nested circular waveguide is not so good as that of the structure in this paper. When the distance between the inner rod and the outer rod on the right side increases, the real part of the effective refractive index for each of the three modes decreases, the propagation length and quality factor of Mode 0 and Mode1 gradually decrease, while the propagation length of Mode 2 increases slightly, and the quality factor is basically unchanged. On the contrary, the mode transmission performance can be significantly improved by increasing the working wavelength and Fermi energy and reducing the dielectric constant of elliptical dielectric nanowires. Compared with the circular dielectric nanowire waveguide nested with an eccentric hollow cylinder coated with graphene, the waveguide designed in this paper can be found to have a good transmission performance. These results are verified by the finite element method. This waveguide can provide a theoretical basis for the design, fabrication and application of nested waveguides of the same type.
      Corresponding author: Xue Wen-Rui, wrxue@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115) and the National basic science talents training fund of China (Grant No. J1103210).
    [1]

    Maier S A 2007 Plasmonics: fundamentals and applications (New York: Springer) p21

    [2]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216

    [3]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370

    [6]

    de Abajo F J G 2014 ACS Photonics 1 135Google Scholar

    [7]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [9]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [10]

    滕达, 王凯, 李哲, 曹清, 唐亚楠, 赵永哲, 刘子怡, 张韵雯, 郭荣珍 2020 光学学报 40 0623002Google Scholar

    Teng D, Wang K, Li Z, Cao Q, Tang Y N, Zhao Y Z, Liu Z Y, Zhang Y W, Guo R Z 2020 Acta Opt. Sin. 40 0623002Google Scholar

    [11]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532Google Scholar

    [12]

    Teng D, Wang K 2021 Nanomaterials 11 210Google Scholar

    [13]

    秦康 2016 硕士学位论文 (浙江: 中国计量大学)

    Qin K 2016 M. S. Thesis (Zhejiang: China Jiliang University) (in Chinese)

    [14]

    Wen B, Cao M S, Lu M M, Cao W Q, Shi H L, Liu J, Wang X X, Jin H B, Fang X Y, Wang W Z, Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [15]

    Zhang M, Cao M S, Shu J C, Cao W Q, Li L, Yuan J 2021 Mat. Sci. Eng. R. 145 100627Google Scholar

    [16]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [17]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Lian Y D, Jian S S 2014 Opt. Express 22 24322Google Scholar

    [18]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289Google Scholar

    [19]

    彭艳玲, 薛文瑞, 卫壮志, 李昌勇 2018 物理学报 67 038102Google Scholar

    Peng Y L, Xue W R, Wei Z Z, Li C Y 2018 Acta Phys. Sin. 67 038102Google Scholar

    [20]

    Teng D, Wang K, Li Z, Zhao Y Z, Zhao G, Li H Y, Wang H 2019 Appl. Sci-Basel. 9 2351Google Scholar

    [21]

    Cheng X, Xue W R, Wei Z Z, Dong H Y, Li C Y 2019 Opt. Commun. 452 467Google Scholar

    [22]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322Google Scholar

    [23]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [24]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611Google Scholar

    [25]

    翟利, 薛文瑞, 杨荣草, 韩丽萍 2015 光学学报 35 1123001Google Scholar

    Zhai L, Xue W R, Yang R C, Han L P 2015 Acta Opt. Sin. 35 1123001Google Scholar

    [26]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [27]

    Zhang J, Boyd A, Tselev A, Paranjape M, Barbara P 2006 Appl. Phys. Lett. 88 123112Google Scholar

    [28]

    郭亚楠, 薛文瑞, 张文梅 2009 物理学报 58 4168Google Scholar

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168Google Scholar

    [29]

    邓新华, 刘江涛, 袁吉任, 王同标 2015 物理学报 64 057801Google Scholar

    Deng X H, Liu J T, Yuan J R, Wang T B 2015 Acta Phys. Sin. 64 057801Google Scholar

    [30]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2011 Phys. Rev. B 84 195446Google Scholar

    [31]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [32]

    Erricolo D, Carluccio G 2013 ACM Trans. Math. Soft. 40 153

    [33]

    Teng D, Wang K, Li Z, Zhao Y Z 2019 Opt. Express 27 12458Google Scholar

    [34]

    Xing R, Jian S S 2017 IEEE Photonic Tech. L. 29 1643Google Scholar

    [35]

    Ye S, Wang Z X, Sun C R, Dong C B, Wei B Z, Wu B L, Jian S S 2018 Opt. Express 26 23854Google Scholar

  • 图 1  内外表面涂覆石墨烯的内嵌偏心空心圆柱的椭圆形电介质波导的横截面示意图

    Figure 1.  The cross section of the waveguide. It was constructed with an elliptical dielectric rod embedded with eccentric hollow cylinder. The inner and outer surfaces of the waveguide were coated with graphene.

    图 2  模式有效折射率实部(a)、传播长度(b)及品质因数(c)随$\lambda $的变化关系图; λ = 6 μm (d), λ = 8 μm (e), λ = 10 μm (f)时Mode0的电场强度分布图

    Figure 2.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) with $\lambda $; the electric field intensity distribution of Mode0 when λ = 6 μm (d), λ = 8 μm (e), λ = 10 μm (f).

    图 3  有效模式折射率实部(a)、传播长度(b)及品质因数(c)随费米能Ef 的变化关系图; Ef = 0.45 eV(d), Ef = 0.57 eV(e)和Ef = 0.69 eV(f)时Mode0的电场强度分布图

    Figure 3.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) with Ef ; the electric field intensity distribution of Mode0 when Ef = 0.45 eV(d), Ef = 0.57 eV(e) and Ef = 0.69 eV(f).

    图 4  有效模式折射率实部(a)、传播长度(b)及品质因数(c)随${\rho _0}$的变化关系图; ρ0 = 60 nm (d), ρ0 = 80 nm (e), ρ0 = 100 nm (f)时Mode0的电场强度分布图

    Figure 4.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) with ${\rho _0}$; the electric field intensity distribution of Mode0 when ρ0 = 60 nm (d), ρ0 = 80 nm (e), ρ0 = 100 nm (f).

    图 5  有效模式折射率实部(a), 传播长度(b)及品质因数(c)随$a$的变化关系图; a = 170 nm (d), a = 190 nm (e), a = 210 nm (f)时Mode0的电场强度分布图

    Figure 5.  The variation diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) with $a$; the electric field intensity distribution of Mode0 when a = 170 nm (d), a = 190 nm (e), a = 210 nm (f).

    图 6  有效模式折射率实部(a), 传播长度(b)及品质因数(c)随$ b $的变化关系图; b = 150 nm (d), b = 170 nm (e), b = 190 nm (f)时Mode0的电场强度分布图

    Figure 6.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) with b; the electric field intensity distribution of Mode0 when b = 150 nm (d)、b = 170 nm (e)、b = 190 nm (f).

    图 7  有效模式折射率实部(a)、传播长度(b)及品质因数(c)随$d$的变化关系图; d = 55 nm (d), d = 75 nm (e), d = 95 nm (f)时Mode0的电场强度分布图

    Figure 7.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) with $d$; the electric field intensity distribution of Mode0 when d = 55 nm (d), d = 75 nm (e), d = 95 nm (f).

    图 8  有效模式折射率实部(a)、传播长度(b)及品质因数(c)随${\varepsilon _2}$的变化关系图; ${\varepsilon _2} = 1.3$ (d), ${\varepsilon _2} = 2.1$ (e), ${\varepsilon _2} = 2.9$ (f)时Mode0的电场强度分布图

    Figure 8.  The variation diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) with ${\varepsilon _2}$; the electric field intensity distribution of Mode0 when ${\varepsilon _2} = 1.3$ (d), ${\varepsilon _2} = 2.1$ (e), ${\varepsilon _2} = 2.9$ (f).

    图 9  两种结构所支持的基模的有效折射率实部(a)、传播长度(b)和品质因数(c)随波长$\lambda $的变化图

    Figure 9.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) of the fundamental mode supported by the two structures with $\lambda $.

    图 10  两种结构所支持的基模的有效折射率实部(a)、传播长度(b)和品质因数(c)随Ef变化的关系图

    Figure 10.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) of the fundamental mode supported by the two structures with Ef.

    图 11  两种结构所支持的基模的有效折射率实部(a)、传播长度(b)和品质因数(c)随${\varepsilon _2}$变化的关系图

    Figure 11.  The diagram of the real part of effective refractive index (a), propagation length (b) and FOM (c) of the fundamental mode supported by the two structures with ${\varepsilon _2}$.

    表 1  波导所支持的3个最低阶模式的模式合成图、${E_z}$分布图及 $|E|$分布图

    Table 1.  The pattern synthesis diagram, the distribution diagram of ${E_z}$and $|E|$ of the three lowest modes supported by the waveguide.

    模式名称模式的合成${E_z}$$|E|$
    Mode0
    Mode1
    Mode2
    DownLoad: CSV
  • [1]

    Maier S A 2007 Plasmonics: fundamentals and applications (New York: Springer) p21

    [2]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216

    [3]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370

    [6]

    de Abajo F J G 2014 ACS Photonics 1 135Google Scholar

    [7]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [9]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [10]

    滕达, 王凯, 李哲, 曹清, 唐亚楠, 赵永哲, 刘子怡, 张韵雯, 郭荣珍 2020 光学学报 40 0623002Google Scholar

    Teng D, Wang K, Li Z, Cao Q, Tang Y N, Zhao Y Z, Liu Z Y, Zhang Y W, Guo R Z 2020 Acta Opt. Sin. 40 0623002Google Scholar

    [11]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532Google Scholar

    [12]

    Teng D, Wang K 2021 Nanomaterials 11 210Google Scholar

    [13]

    秦康 2016 硕士学位论文 (浙江: 中国计量大学)

    Qin K 2016 M. S. Thesis (Zhejiang: China Jiliang University) (in Chinese)

    [14]

    Wen B, Cao M S, Lu M M, Cao W Q, Shi H L, Liu J, Wang X X, Jin H B, Fang X Y, Wang W Z, Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [15]

    Zhang M, Cao M S, Shu J C, Cao W Q, Li L, Yuan J 2021 Mat. Sci. Eng. R. 145 100627Google Scholar

    [16]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [17]

    Gao Y X, Ren G B, Zhu B F, Liu H Q, Lian Y D, Jian S S 2014 Opt. Express 22 24322Google Scholar

    [18]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289Google Scholar

    [19]

    彭艳玲, 薛文瑞, 卫壮志, 李昌勇 2018 物理学报 67 038102Google Scholar

    Peng Y L, Xue W R, Wei Z Z, Li C Y 2018 Acta Phys. Sin. 67 038102Google Scholar

    [20]

    Teng D, Wang K, Li Z, Zhao Y Z, Zhao G, Li H Y, Wang H 2019 Appl. Sci-Basel. 9 2351Google Scholar

    [21]

    Cheng X, Xue W R, Wei Z Z, Dong H Y, Li C Y 2019 Opt. Commun. 452 467Google Scholar

    [22]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322Google Scholar

    [23]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [24]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611Google Scholar

    [25]

    翟利, 薛文瑞, 杨荣草, 韩丽萍 2015 光学学报 35 1123001Google Scholar

    Zhai L, Xue W R, Yang R C, Han L P 2015 Acta Opt. Sin. 35 1123001Google Scholar

    [26]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [27]

    Zhang J, Boyd A, Tselev A, Paranjape M, Barbara P 2006 Appl. Phys. Lett. 88 123112Google Scholar

    [28]

    郭亚楠, 薛文瑞, 张文梅 2009 物理学报 58 4168Google Scholar

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168Google Scholar

    [29]

    邓新华, 刘江涛, 袁吉任, 王同标 2015 物理学报 64 057801Google Scholar

    Deng X H, Liu J T, Yuan J R, Wang T B 2015 Acta Phys. Sin. 64 057801Google Scholar

    [30]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2011 Phys. Rev. B 84 195446Google Scholar

    [31]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [32]

    Erricolo D, Carluccio G 2013 ACM Trans. Math. Soft. 40 153

    [33]

    Teng D, Wang K, Li Z, Zhao Y Z 2019 Opt. Express 27 12458Google Scholar

    [34]

    Xing R, Jian S S 2017 IEEE Photonic Tech. L. 29 1643Google Scholar

    [35]

    Ye S, Wang Z X, Sun C R, Dong C B, Wei B Z, Wu B L, Jian S S 2018 Opt. Express 26 23854Google Scholar

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [5] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [6] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [7] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [8] Cheng Xin, Xue Wen-Rui, Wei Zhuang-Zhi, Dong Hui-Ying, Li Chang-Yong. Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire. Acta Physica Sinica, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [9] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [10] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [12] Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires. Acta Physica Sinica, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [13] Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [14] Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian. Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures. Acta Physica Sinica, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [15] Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang. Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles. Acta Physica Sinica, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [16] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] Yue Song, Li Zhi, Chen Jian-Jun, Gong Qi-Huang. Dielectric waveguide with deep subwavelength mode confinement based on coupled nanowires. Acta Physica Sinica, 2011, 60(9): 094214. doi: 10.7498/aps.60.094214
    [20] Sheng Zheng, Huang Si-Xun, Zeng Guo-Dong. Ocean duct inversion from radar clutter using Bayesian-Markov chain Monte Carlo method. Acta Physica Sinica, 2009, 58(6): 4335-4341. doi: 10.7498/aps.58.4335
Metrics
  • Abstract views:  3853
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  16 December 2021
  • Accepted Date:  20 January 2022
  • Available Online:  10 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回