-
A novel finite-difference time domain (FDTD) algorithm named equivalent circuit FDTD (EC-FDTD) is realized, which introduces lumped elements from transmission line theory into Yee cell. It includes lumped elements such as series inductance and shunt capacitance in the right-handed materials, as well as shunt inductance and series capacitance in the left-handed materials. Due to its promising physical thoughts, it can be easily generalized to arbitrary dispersive materials including frequency selective surfaces and metamaterials. The technology of streaming single-instruction multiple-data (SIMD) extensions (SSE) was proposed by Intel and is currently utilized in personal computers. SSE is a kind of parallel speedup technology in one core. The speedup can be achieved four times in principle without changing hardware. Combined with SSE, the EC-FDTD can be apparently accelerated. Twice speedup is achieved in the tests of this paper. The algorithm of EC-FDTD is utilized to design the wideband metamaterials absorbers by employing the single square and double square loops loaded with the lumped resistors. The invisible radome has a great impact on reducing the radar cross section of the antenna out of band. The radome is designed with operating frequency to be 1 GHz and the absent bandwidth from 3 GHz to 9 GHz by the algorithm. And then these prototypes are fabricated and measured. From the comparative results, the correctness of EC-FDTD and the speedup of the SSE are both verified.
-
Keywords:
- EC-FDTD /
- SSE /
- metamaterial absorbers /
- invisible radome
[1] Yu W H, Yang X L, Liu Y J, Mittra R, Muto A 2011 Advance FDTD Methods: parallelization, acceleration and engineering applications (Artech House: Boston London) pp37-46
[2] Yu W H, Mittra R 1999 IEEE Trans. on Microwave Theory and Techniques 47 353
[3] Yu W H, Mittra R 2000 IEEE Antennas and Propagation Magazine 42 28
[4] Waldschmidt G J, Taflove A 2004 IEEE Antennas and Propagation Magazine 52 1658
[5] Göddeke D, Strzodka R, Jamaludin M Y, McCormick P, Wobker H, Becker C, Turek S 2008 International Journal of Computational Science and Engineering 4 36
[6] Wang Y, Yuan N Ch 2006 Journal of Systems Engineering and Electronic 17 80
[7] Yi Y, Chen B, Chen H L, Fang D G 2007 IEEE Microwave and Wireless Components Letters 17 91
[8] Yee K S 1966 IEEE Trans. on Antennas and Propagation 14 302
[9] Rennings A, Otto S, Caloz C, Lauer A, Bilgic W, Waldow P 2006 Int. J. Numer. Model 19 141
[10] Rennings A, Otto S, Lauer A, Caloz C, Waldow P 2006 Proc. of the European Microwave Association 2 71
[11] Streaming SIMD extensions (SSE) Kosa- da Incorporated, Athens, Ohio 45701
[12] Yu W H 2011 IEEE International Conference on Microwave Technology & Computional Electromagnetics Beijing, May22-25, 2011 p441
[13] Caloz C, Itoh T 2005 Electromagnetic metamaterials: transmission line theory and microwave applications (John Wiley & Sons: New Jersey) pp59-131
[14] Rennings A, Lauer A, Caloz C, Wolff I 2008 Springer Proceedings in Physics 121
[15] Wang X D, Ye Y H, Ma J, Jiang M P 2010 Chin. Phys. Lett. 27 94101
[16] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Oghenemuero G 2012 Chin. Phys. B 21 038501
[17] Gu C, Qu S B, Pei Z B, Xu Z, Liu, Gu W 2011 Chin. Phys. B 20 017801
[18] Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]
[19] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
[20] Costa F, Monorchio A, Manara G 2010 IEEE Trans. on Antennas and Propagation 58 1551
[21] Kozakoff D J 2010 Analysis of Radome-Enclosed Antennas (Artech House: MA) pp55-73
[22] Costa F, Monorchio A 2012 IEEE Trans. on Antennas and Propagation 60 2740
-
[1] Yu W H, Yang X L, Liu Y J, Mittra R, Muto A 2011 Advance FDTD Methods: parallelization, acceleration and engineering applications (Artech House: Boston London) pp37-46
[2] Yu W H, Mittra R 1999 IEEE Trans. on Microwave Theory and Techniques 47 353
[3] Yu W H, Mittra R 2000 IEEE Antennas and Propagation Magazine 42 28
[4] Waldschmidt G J, Taflove A 2004 IEEE Antennas and Propagation Magazine 52 1658
[5] Göddeke D, Strzodka R, Jamaludin M Y, McCormick P, Wobker H, Becker C, Turek S 2008 International Journal of Computational Science and Engineering 4 36
[6] Wang Y, Yuan N Ch 2006 Journal of Systems Engineering and Electronic 17 80
[7] Yi Y, Chen B, Chen H L, Fang D G 2007 IEEE Microwave and Wireless Components Letters 17 91
[8] Yee K S 1966 IEEE Trans. on Antennas and Propagation 14 302
[9] Rennings A, Otto S, Caloz C, Lauer A, Bilgic W, Waldow P 2006 Int. J. Numer. Model 19 141
[10] Rennings A, Otto S, Lauer A, Caloz C, Waldow P 2006 Proc. of the European Microwave Association 2 71
[11] Streaming SIMD extensions (SSE) Kosa- da Incorporated, Athens, Ohio 45701
[12] Yu W H 2011 IEEE International Conference on Microwave Technology & Computional Electromagnetics Beijing, May22-25, 2011 p441
[13] Caloz C, Itoh T 2005 Electromagnetic metamaterials: transmission line theory and microwave applications (John Wiley & Sons: New Jersey) pp59-131
[14] Rennings A, Lauer A, Caloz C, Wolff I 2008 Springer Proceedings in Physics 121
[15] Wang X D, Ye Y H, Ma J, Jiang M P 2010 Chin. Phys. Lett. 27 94101
[16] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Oghenemuero G 2012 Chin. Phys. B 21 038501
[17] Gu C, Qu S B, Pei Z B, Xu Z, Liu, Gu W 2011 Chin. Phys. B 20 017801
[18] Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]
[19] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
[20] Costa F, Monorchio A, Manara G 2010 IEEE Trans. on Antennas and Propagation 58 1551
[21] Kozakoff D J 2010 Analysis of Radome-Enclosed Antennas (Artech House: MA) pp55-73
[22] Costa F, Monorchio A 2012 IEEE Trans. on Antennas and Propagation 60 2740
Catalog
Metrics
- Abstract views: 5921
- PDF Downloads: 756
- Cited By: 0