-
Recently, many chaotic maps-based authenticated key agreement protocols using smart cards have been proposed. Unfortunately, tamper-resistant card readers make these protocols costly and unpractical. In addition, the digital signature scheme based on chaotic maps requires high computational resources. There exists security problem in publishing public keys which depend on signature schemes. In this paper, we will present a novel authenticated key protocol without smart cards while using extended Chebyshev maps. The proposed protocol eliminates the process of publishing the public key. Security and performance analysis show that our protocol can resist various attacks and yet is reasonably efficient. Therefore, our protocol is more suitable for practical applications.
-
Keywords:
- chaotic map /
- key agreement /
- smart card /
- digital signature
[1] Wei J, Liao X, Wong K, Xiang T 2006 Chaos Soliton. Fract. 30 1143
[2] Liu Q, Fang J Q, Zhao G, Liu Y 2012Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 物理学报 61 130508]
[3] Wang X Y, Bao M M 2013 Chin. Phys. B 22 050508
[4] Xiao D, Liao X, Deng S 2005 Chaos Soliton. Fract. 24 65
[5] He T T, Luo X S, Liao Z X, Wei Z C 2012 Acta Phys. Sin. 61 110506 (in Chinese) [何婷婷, 罗晓曙, 廖志贤, 韦正丛 2012 物理学报 61 110506]
[6] Wang F L 2011 Acta Phys. Sin. 60 110517 (in Chinese) [王福来 2011 物理学报 60 110517]
[7] Chen T M, Jiang R R 2013 Acta Phys. Sin. 62 040301 (in Chinese) [陈铁明, 蒋融融 2013 物理学报 62 040301]
[8] Bergamo P, Arco P, Santis A, Kocarev L 2005 IEEE Tran. Circuits. 52 1382
[9] Han S Chang E 2009Chaos Soliton. Fract. 39 1283
[10] Kocarev L, Tasev Z 2003 Proceedings of the 38th International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 p28
[11] Xiao D, Liao X F, Deng S J 2007 Inf. Sci. 177 1136
[12] Xiao D, Liao X, Wong K 2005 Chaos Soliton. Fract. 23 1327
[13] Xiang T, Wong K, Liao X 2009 Chaos Soliton. Fract. 40 672
[14] Wang X Y, Luan D P 2013 Chin. Phys. B 22 110503
[15] Tseng H R, Jan R H, Yang W 2009 Proceedings of the 13th International Conference on Communications Dresden, Germany, June 14-18, 2009 p1
[16] Niu Y J, Wang X Y 2011 Commun. Nonlinear Sci. Numer. Simul 16 1986
[17] Yoon E J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2735
[18] Lee C, Chen C, Wu C, Huang S 2012 Nonlinear Dyn. 69 79
[19] He D, Chen Y 2012 Nonlinear Dyn. 69 1149
[20] Xue K, Hong P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2969
[21] Zhao F J, Gong P, Li S 2013 Nonlinear Dyn. 74 419
[22] Guo X, Zhang J 2010 Inf. Sci. 180 4069
[23] Gong P, Li P, Shi W B 2012 Nonlinear Dyn. 70 2401
[24] Zhang L 2008 Chaos Soliton. Fract. 37 669
-
[1] Wei J, Liao X, Wong K, Xiang T 2006 Chaos Soliton. Fract. 30 1143
[2] Liu Q, Fang J Q, Zhao G, Liu Y 2012Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 物理学报 61 130508]
[3] Wang X Y, Bao M M 2013 Chin. Phys. B 22 050508
[4] Xiao D, Liao X, Deng S 2005 Chaos Soliton. Fract. 24 65
[5] He T T, Luo X S, Liao Z X, Wei Z C 2012 Acta Phys. Sin. 61 110506 (in Chinese) [何婷婷, 罗晓曙, 廖志贤, 韦正丛 2012 物理学报 61 110506]
[6] Wang F L 2011 Acta Phys. Sin. 60 110517 (in Chinese) [王福来 2011 物理学报 60 110517]
[7] Chen T M, Jiang R R 2013 Acta Phys. Sin. 62 040301 (in Chinese) [陈铁明, 蒋融融 2013 物理学报 62 040301]
[8] Bergamo P, Arco P, Santis A, Kocarev L 2005 IEEE Tran. Circuits. 52 1382
[9] Han S Chang E 2009Chaos Soliton. Fract. 39 1283
[10] Kocarev L, Tasev Z 2003 Proceedings of the 38th International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 p28
[11] Xiao D, Liao X F, Deng S J 2007 Inf. Sci. 177 1136
[12] Xiao D, Liao X, Wong K 2005 Chaos Soliton. Fract. 23 1327
[13] Xiang T, Wong K, Liao X 2009 Chaos Soliton. Fract. 40 672
[14] Wang X Y, Luan D P 2013 Chin. Phys. B 22 110503
[15] Tseng H R, Jan R H, Yang W 2009 Proceedings of the 13th International Conference on Communications Dresden, Germany, June 14-18, 2009 p1
[16] Niu Y J, Wang X Y 2011 Commun. Nonlinear Sci. Numer. Simul 16 1986
[17] Yoon E J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2735
[18] Lee C, Chen C, Wu C, Huang S 2012 Nonlinear Dyn. 69 79
[19] He D, Chen Y 2012 Nonlinear Dyn. 69 1149
[20] Xue K, Hong P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2969
[21] Zhao F J, Gong P, Li S 2013 Nonlinear Dyn. 74 419
[22] Guo X, Zhang J 2010 Inf. Sci. 180 4069
[23] Gong P, Li P, Shi W B 2012 Nonlinear Dyn. 70 2401
[24] Zhang L 2008 Chaos Soliton. Fract. 37 669
Catalog
Metrics
- Abstract views: 6024
- PDF Downloads: 521
- Cited By: 0