Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulations of shock initiation of hexanitrohexaazaisowurtzitane/trinitrotoluene cocrystal

Liu Hai Li Qi-Kai He Yuan-Hang

Citation:

Molecular dynamics simulations of shock initiation of hexanitrohexaazaisowurtzitane/trinitrotoluene cocrystal

Liu Hai, Li Qi-Kai, He Yuan-Hang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multiscale shock technique (MSST) has been shown to accurately reproduce the thermodynamic and chemical reaction paths throughout the shock wave fronts and reaction zone of shock initiation of energetic materials. A 1:1 cocrystal of hexanitrohexaazaisowurtzitane/trinitrotoluene (CL20/TNT) is shocked along the 110 orientations under the conditions of shock velocities lying in the range 610 kms-1 in ReaxFF molecular dynamics simulations. Products recognition analysis leads to reactions occurring with shock velocities of 7 kms-1 or stronger, and the shock initiation pressure is 24.56 GPa obtained from the conservation of Rankine-Hugoniot relation. Comparisons of the relationships are carried out between shock velocity and particle velocity, shock velocities and elastic-plastic transition. During shock initiation with the shock velocities lying in the range 78 kms-1, the shocked systems correspond to an elastic-plastic deformation, primary chemical reactions, and secondary chemical reactions. And the elastic-plastic transition coincides with the chemical reaction at higher shock velocity (9 kms-1), the cocrystal material response is over-driven, and all the thermodynamic properties show steep gradients, the compressed material by the shock wave steps into the plastic region, and a large number of carbon atoms appear in the early stage of over-driven shock initiation.
    [1]

    Zumbrun K 2011 Arch. Rational Mech. Anal. 200 141

    [2]

    Bolton O, Matzger J A 2011 Angew. Chem. Int. Ed. 50 8960

    [3]

    Yang Z W, Li H Z, Zhou X Q, Zhang C Y, Huang H, Li J S, Nie F D 2012 Cryst. Growth Des. 12 5155

    [4]

    Bolton O, Simke L R, Pagoria P F, Matzger A J 2012 Cryst. Growth Des. 12 4311

    [5]

    Wei C X, Huang H, Duan X H, Pei C H 2011 Propellants Explos. Pyrotech. 36 416

    [6]

    Landenberger K B, Matzger A J 2010 Crystal Growth & Design 10 5341

    [7]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [8]

    Maillet J B, Mareschal M, Soulard L, Ravelo R, Lomdahl P S, Germann T C, Holian B L 2001 Phys. Rev. E. 63 016121

    [9]

    Heim A J, Jensen N G, Kober E M, Germann T C 2008 Phys. Rev. E 78 046710

    [10]

    Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503

    [11]

    Reed E J, Fried L E, Manaa M R, Joannopoulos J D 2005 Chemistry at Extreme Conditions (New York: Elsevier) p297

    [12]

    Reed E J, Fried L E, Henshaw W D, Tarver C M 2006 Phys. Rev. E 74 056706

    [13]

    Reed E J, Maiti A, Fried L E 2010 Phys. Rev. E 81 016607

    [14]

    Manaa M, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146

    [15]

    Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2008 Nat. Phys. 4 72

    [16]

    Shan T R, Wixom R R, Mattsson A E, Thompson A P 2013 J. Phys. Chem. B 117 928

    [17]

    Ge N N, Wei Y K, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [18]

    Wen Y S, Xue X G, Zhou X Q, Guo F, Long X P, Zhou Y, Li H Z, Zhang C Y 2013 J. Phys. Chem. C 117 24368

    [19]

    Manaa M R, Reed E J, Fried L E, Goldman N 2009 J. Am. Chem. Soc. 131 5483

    [20]

    Mundy C J, Curioni A, Goldman N, Kuo I F W, Reed E J, Fried L E, Ianuzzi M 2008 J. Chem. Phys. 128 184701

    [21]

    Goldman N, Fried L E, Mundy C J, Kuo I F W, Curioni A, Reed E J 2007 AIP Conf. Proc. 955 443

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [23]

    Brenner D W 1990 Physical Review B 42 9458

    [24]

    Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [25]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [26]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [27]

    Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960

    [28]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [29]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [30]

    Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074

    [31]

    Strachan A, Kober E W, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502

    [32]

    Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard W A 2009 J. Phys. Chem. A 113 10619

    [33]

    Viecelli J A, Ree F H 2000 Journal of Applied Physics 88 683

    [34]

    Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352

    [35]

    Vasil'ev A A, Pinaev A V 2008 Combustion, Explosion, and Shock Waves. 44 317

    [36]

    Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506

    [37]

    Rice M H, McQueen R G, Walsh J M 1958 Solid State Phys. 6 1

    [38]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p648

    [39]

    Smith A L, Allen A, Belak J, Boehly T, Hauer A, B. Holian B, Kalantar D, Kyrala G, Lee R W, Lomdahl P, Meyers M A, Paisley D, Pollaine S, Remington B, Swift D C, Weber S, Wark J S 2001 Phys. Rev. Lett. 86 2349

    [40]

    Lane J M D, Marder M P 2006 arXiv preprint cond-mat/0607335

    [41]

    Yang Z W, Huang H, Li H Z, Zhou X Q, Li J S, Nie F D 2012 Chinese Journal of Energetic Materials 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 李金山, 聂福德 2012 含能材料 20 256]

  • [1]

    Zumbrun K 2011 Arch. Rational Mech. Anal. 200 141

    [2]

    Bolton O, Matzger J A 2011 Angew. Chem. Int. Ed. 50 8960

    [3]

    Yang Z W, Li H Z, Zhou X Q, Zhang C Y, Huang H, Li J S, Nie F D 2012 Cryst. Growth Des. 12 5155

    [4]

    Bolton O, Simke L R, Pagoria P F, Matzger A J 2012 Cryst. Growth Des. 12 4311

    [5]

    Wei C X, Huang H, Duan X H, Pei C H 2011 Propellants Explos. Pyrotech. 36 416

    [6]

    Landenberger K B, Matzger A J 2010 Crystal Growth & Design 10 5341

    [7]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [8]

    Maillet J B, Mareschal M, Soulard L, Ravelo R, Lomdahl P S, Germann T C, Holian B L 2001 Phys. Rev. E. 63 016121

    [9]

    Heim A J, Jensen N G, Kober E M, Germann T C 2008 Phys. Rev. E 78 046710

    [10]

    Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503

    [11]

    Reed E J, Fried L E, Manaa M R, Joannopoulos J D 2005 Chemistry at Extreme Conditions (New York: Elsevier) p297

    [12]

    Reed E J, Fried L E, Henshaw W D, Tarver C M 2006 Phys. Rev. E 74 056706

    [13]

    Reed E J, Maiti A, Fried L E 2010 Phys. Rev. E 81 016607

    [14]

    Manaa M, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146

    [15]

    Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2008 Nat. Phys. 4 72

    [16]

    Shan T R, Wixom R R, Mattsson A E, Thompson A P 2013 J. Phys. Chem. B 117 928

    [17]

    Ge N N, Wei Y K, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [18]

    Wen Y S, Xue X G, Zhou X Q, Guo F, Long X P, Zhou Y, Li H Z, Zhang C Y 2013 J. Phys. Chem. C 117 24368

    [19]

    Manaa M R, Reed E J, Fried L E, Goldman N 2009 J. Am. Chem. Soc. 131 5483

    [20]

    Mundy C J, Curioni A, Goldman N, Kuo I F W, Reed E J, Fried L E, Ianuzzi M 2008 J. Chem. Phys. 128 184701

    [21]

    Goldman N, Fried L E, Mundy C J, Kuo I F W, Curioni A, Reed E J 2007 AIP Conf. Proc. 955 443

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [23]

    Brenner D W 1990 Physical Review B 42 9458

    [24]

    Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [25]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [26]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [27]

    Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960

    [28]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [29]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [30]

    Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074

    [31]

    Strachan A, Kober E W, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502

    [32]

    Zhang L Z, Zybin S V, van Duin A C T, Dasgupta S, Goddard W A 2009 J. Phys. Chem. A 113 10619

    [33]

    Viecelli J A, Ree F H 2000 Journal of Applied Physics 88 683

    [34]

    Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352

    [35]

    Vasil'ev A A, Pinaev A V 2008 Combustion, Explosion, and Shock Waves. 44 317

    [36]

    Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506

    [37]

    Rice M H, McQueen R G, Walsh J M 1958 Solid State Phys. 6 1

    [38]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p648

    [39]

    Smith A L, Allen A, Belak J, Boehly T, Hauer A, B. Holian B, Kalantar D, Kyrala G, Lee R W, Lomdahl P, Meyers M A, Paisley D, Pollaine S, Remington B, Swift D C, Weber S, Wark J S 2001 Phys. Rev. Lett. 86 2349

    [40]

    Lane J M D, Marder M P 2006 arXiv preprint cond-mat/0607335

    [41]

    Yang Z W, Huang H, Li H Z, Zhou X Q, Li J S, Nie F D 2012 Chinese Journal of Energetic Materials 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 李金山, 聂福德 2012 含能材料 20 256]

  • [1] Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-Long, Liu Hao, Guan Zan-Yang, Zhang Huan, Sun Liang, Dong Yun-Song, Yang Dong, Wang Zhe-Bin, Yang Jia-Min. Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules. Acta Physica Sinica, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [2] Wen Peng,  Tao Gang. Molecular dynamics study of the effect of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [3] Zheng Zhuan-Ping, Liu Yu-Hang, Zhao Shuai-Yu, Jiang Jie-Wei, Lu Le. Terahertz spectra of curcumin and catechol co-crystals. Acta Physica Sinica, 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [4] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [5] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] Pan Hao, Wang Sheng-Tao, Wu Zi-Hui, Hu Xiao-Mian. Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading. Acta Physica Sinica, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [7] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [8] Zhao Xin-Wen, Li Xin-Zhu, Zhang Hang, Wang Xue-Jun, Song Ping, Zhang Han-Zhao, Kang Qiang, Huang Jin, Wu Qiang. Dynamical behaviors of Sn micro-sphere particles under shock wave action. Acta Physica Sinica, 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [9] Chen Ke-Ping, Lü Peng, Peng Wang. Liquid-solid phase transition of Cu-Zr eutectic alloy under microgravity condition. Acta Physica Sinica, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [10] Meng Guang-Hui, Lin Xin. Characteristic scale selection of lamellar spacings in binary eutectic solidification. Acta Physica Sinica, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [11] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [12] Liu Hai, Li Qi-Kai, He Yuan-Hang. Pyrolysis of CL20-TNT cocrystal from ReaxFF/lg reactive molecular dynamics simulations. Acta Physica Sinica, 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [13] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Melting behavior of Au-Pd eutectic nanoparticle: A molecular dynamics study. Acta Physica Sinica, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [14] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [15] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [16] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] Zhu Yao-Chan, Wang Jin-Cheng, Yang Gen-Cang, Yang Yu-Juan. Multiphase field simulation of the eutectic growth under three schemes of varying velocity. Acta Physica Sinica, 2007, 56(9): 5542-5547. doi: 10.7498/aps.56.5542
    [19] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
Metrics
  • Abstract views:  6327
  • PDF Downloads:  703
  • Cited By: 0
Publishing process
  • Received Date:  09 June 2014
  • Accepted Date:  29 August 2014
  • Published Online:  05 January 2015

/

返回文章
返回