搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

姜黄素与邻苯二酚共晶的太赫兹光谱

郑转平 刘榆杭 赵帅宇 蒋杰伟 卢乐

引用本文:
Citation:

姜黄素与邻苯二酚共晶的太赫兹光谱

郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐

Terahertz spectra of curcumin and catechol co-crystals

Zheng Zhuan-Ping, Liu Yu-Hang, Zhao Shuai-Yu, Jiang Jie-Wei, Lu Le
PDF
HTML
导出引用
  • 姜黄素是一种具有抗炎、抗氧化及抗癌等作用的常用药物, 但是其在水中的溶解度较低. 近年来, 药物共晶是一种增强水溶性有限药物溶解度和溶解性的有效方法. 基于此, 本文利用太赫兹时域光谱技术(THz-TDS)研究了姜黄素与邻苯二酚共晶的太赫兹光谱. 首先测试了姜黄素、邻苯二酚、二者物理混合及其共晶在0.5—3.5 THz的实验谱. 实验数据显示共晶获得的位于3.31 THz处的吸收峰明显区别于原料物质, 表明THz-TDS可以有效鉴别姜黄素、邻苯二酚及其共晶体; 基于密度泛函理论, 对姜黄素与邻苯二酚共晶体可能存在的4种理论晶型进行结构优化与频谱模拟, 其中理论晶型Ⅲ模拟结果与实验数据比较符合. 研究发现, 共晶体是通过姜黄素的羰基C10=O3与邻苯二酚的羟基O61—H55形成氢键而成, 共晶的THz特征吸收峰是在氢键带动下由共晶中两分子的官能团共同作用产生的.
    Curcumin (CUR) is a commonly used pharmaceutical with anti-inflammatory, antioxidant and anti-cancer effects, but its solubility in water is relatively low. In recent years, pharmaceutical co-crystal has been an effective method of enhancing the solubility of limited water-soluble pharmaceuticals. Based on this, terahertz time-domain spectroscopy (THz-TDS) is used to study the THz spectra of curcumin-catechol co-crystal. Firstly, the experimental spectra of curcumin, catechol (CTL), their physical mixture and their co-crystal are measured in a range of 0.5–3.5 THz, respectively. The experimental data show that CUR obtains six THz absorption peaks, while CTL possess three THz absorption peaks, the physical mixture obtains four absorption peaks, and their CUR-CTL co-crystal obtains three absorption peaks. These results indicate that THz-TDS can effectively identify curcumin, catechol and their co-crystals. The fact that the absorption peak at 3.31 THz obtained in co-crystal is entirely different from those of raw materials, implying that new weak interactional forces are generated between CUR molecule and CTL molecule, the co-crystal forms a new three-dimensional structure compared with their raw materials. These results are also verified by X-ray diffraction spectra of raw material and their Co-crystal. Moreover, four possible theoretical forms of curcumin-catechol co-crystal are optimized and simulated by using density functional theory (DFT). The calculated results indicate that the data of co-crystal form III are in good agreement with the experimental spectrum, and the simulation effectively reconstructs the experimental spectrum. So it can be inferred that the co-crystal is formed through the hydrogen bond between the carbonyl C10=O3 of CUR and the hydroxy O61-H55 of CTL. In addition, depending on the good match between experimental data and theoretical results, it is found that the three absorption peaks in the co-crystal do not origin from the action of a single molecule, but the joint action of the functional groups of the two molecules under the driving by the hydrogen bond. The existence of weak interaction forces, such as the hydrogen bond, not only changes the structural parameters of the two molecules, but also reestablishes a new intermolecular force, which then affects the interactional motions of the co-crystal. This fact directly leads the CUR-CTL co-crystal to exhibit THz absorption peaks different from those of raw materials in the THz band.
      通信作者: 郑转平, zhengzhuanp@xupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 62276210)和陕西省自然科学基础研究计划(批准号: 2022JM-380)资助的课题.
      Corresponding author: Zheng Zhuan-Ping, zhengzhuanp@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62276210) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JM-380).
    [1]

    Kulkarni A, Shete S, Hol V, Bachhav R 2020 AJPS 13 104Google Scholar

    [2]

    Prabhakar P, Giridhar S 2019 Indian J. Pharm. Educ. 53 563Google Scholar

    [3]

    Novena L. M, Athimoolam S, Anitha R, Bahadur S A 2021 J. Mol. Struct. 1249 2022Google Scholar

    [4]

    Akshita J, Mansi P, Neelima D, Kunal C, Maninder 2022 J. Pharm. 111 2788Google Scholar

    [5]

    George C P, Thorat S H, Shaligram P S, Suresha P R, Gonnade R G 2020 Crystengcomm 22 6137Google Scholar

    [6]

    Sakamoto N, Tsuno N, Koyama R, Gato K, Titapiwatanakun V, Takatori K, Fukami T 2021 Chem. Pharm. Burl. 69 1995Google Scholar

    [7]

    Liu L X, Liu M, Zhang Y, Feng Y, Wu L, Zhang L, Zhang Y J, Liu Y L, Zou D Y 2022 J. Mol. Struct. 1250 1318

    [8]

    Yong D, Hong X F, Qi Z, Hui L Z, Zhi H 2016 Spectrochim. Acta. A 153 580Google Scholar

    [9]

    Wan M, Fang J Y, Xue J D, Liu J J, Qin J Y, Hong Z, Li J S, D Y 2022 Int. J. Mol. Sci. 23 8550Google Scholar

    [10]

    段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智 2021 物理学报 70 248702Google Scholar

    Duan T C, Yan S j, Zhao Y, Sun T Y, Li Y G, Zhu Z 2021 Acta Phys. Sin. 70 248702Google Scholar

    [11]

    郑转平, 刘榆杭, 曾方, 赵帅宇, 朱礼鹏 2023 物理学报 72 083201Google Scholar

    Zheng Z P, Liu Y H, Zeng F, Zhao S Y, Zhu L P 2023 Acta Phys. Sin. 72 083201Google Scholar

    [12]

    Cai Q, Xue J D, Wang Q, Du Y 2017 Spectrochim. Acta. A 186 29Google Scholar

    [13]

    Wang P F, Zhao J T, Zhang Y M, Zhu Z J, Liu L Y, Zhao H G, Yang X C, Yang X N, Sun X H, He M G 2022 Int. J. Pharmaceut. 620 121759Google Scholar

    [14]

    Margaret D, Mizuki M, Kei H, Timothy K 2020 J. Phys. Chem. A 124 9793Google Scholar

    [15]

    Luczynska, Katarzyna, Druzbicki, Kacper, Lyczko, Krzysztof, Dobrowolski 2015 J. Phys. Chem. B 119 6852Google Scholar

    [16]

    Adrieli S H, Matheus G L, Radharani B 2022 Ind. Crop. Prod. 177 114501Google Scholar

    [17]

    Yao T M, Srinivas J W 2022 Food Hydrocolloids 126 107466Google Scholar

    [18]

    Saffarionpour S, Diosady L L 2022 Curr. Opin. Food. Sci. 43 155Google Scholar

    [19]

    Sakineh M, Ali H A, Pouya M 2020 Chromatographia 83 1293Google Scholar

    [20]

    程桂林, 邓彩赟, 蒋成君 2018 中国现代应用药学 35 5Google Scholar

    Cheng G L, Deng G Y, Jiang C J 2018 Chin. J. Mod. Drug App. 35 5Google Scholar

    [21]

    Ribas M M, Sakata G S, Santos A E, Magro C D, Aguiar G P, Vladimir M L 2019 J. Supercrit. Fluid. 152 104564Google Scholar

    [22]

    Indumathi S, Jenna S M, Sohrab R, Sameer D V 2018 J. Chem. Data. 63 3652Google Scholar

    [23]

    邓彩赟, 蒋成君 2018 浙江科技学院学报 30 16Google Scholar

    Deng C Y, Jiang C J 2018 J. Zhejiang Univ. Sci. B 30 16Google Scholar

    [24]

    Roothan C C 1951 Rev. Mod. Phys. 23 69Google Scholar

    [25]

    Stephens P J, Devlin F J, Chabalowski C F 1994 J. Phys. Chem. 98 11623Google Scholar

    [26]

    Chen T, Yu L X, Tang Z Q, Li Z, Hu F G 2022 Chem. Phys. 562 111676Google Scholar

    [27]

    Otsuka Y T, Ito A, Takeuchi M, Sasaki T, Tanaka H J 2020 J. Brug Deliv. Sci. Tec. 56 101215Google Scholar

    [28]

    Hjorth H T, Jan K, Arvid M, Bertil S, Znzell C R, Eric J B 1982 Acta Chem. Sca. 36 475Google Scholar

    [29]

    Wunderlich H, Mootz D 1971 Acta Cry. Sect. B 27 1684Google Scholar

  • 图 1  CUR (a)与CTL (b)的分子结构

    Fig. 1.  Molecular Structure of CUR (a) and CTL (b).

    图 2  CUR, CTL, CUR-CTL物理混合、CUR-CTL共晶的THz谱

    Fig. 2.  THz spectra of CUR, CTL, CUR-CTL physical mixing, and CUR-CTL co-crystal.

    图 3  CUR, CTL, CUR-CTL共晶的X衍射实验谱

    Fig. 3.  X-ray diffraction experimental spectra of CUR, CTL, and CUR-CTL co-crystal.

    图 4  CUR-CTL共晶分子结构 (a)晶型Ⅰ; (b)晶型Ⅱ; (c)晶型Ⅲ; (d)晶型Ⅳ

    Fig. 4.  Molecular structures of CUR-CTL co-crystal: (a) Form I; (b) form II; (c) form III; (d) form Ⅳ.

    图 5  CUR-CTL共晶的实验与模拟THz图谱

    Fig. 5.  Experimental and simulated THz spectra of CUR-CTL co-crystal.

    图 6  CUR-CTL共晶在不同峰位的振动模式 (a) 1.03 THz; (b) 1.95 THz; (c) 3.34 THz

    Fig. 6.  Vibrational modes of CUR-CTL co-crystal at different peaks: (a) 1.03 THz; (b) 1.95 THz; (c) 3.34 THz.

    表 1  姜黄素与邻苯二酚键长和键角

    Table 1.  Bond length and bond angle of curcumin and catechol.

    Bond length/nmCUR[28]CTL[29]Co-crystal
    C10=O30.129840.12131
    O61—H550.081410.09698
    Bond angle/(°)CURCTLCo-crystal
    ∠C34—C10—O3117.93600124.79870
    ∠C49—O61—H55111.14600116.49998
    下载: 导出CSV

    表 2  CUR-CTL共晶体实验和理论计算数据

    Table 2.  The results of experimental and calculated data of CUR-CTL co-crystal.

    Frequency/THzVibrational mode
    Expt.Theo.
    1.031.03Bending of C34—C10—C32, Out-of-plane oscillation of R2 and R2, In plane oscillation of CTL
    1.951.95Out of plane torsion of -C16H3 and R2, Out of plane rocking oscillation of CTL
    3.313.34The stretching vibration of hydrogen bond C10=O30···H55—O61, Swing of C30—C32—C10, Out-of-plane oscillation of R2 and R1
    下载: 导出CSV
  • [1]

    Kulkarni A, Shete S, Hol V, Bachhav R 2020 AJPS 13 104Google Scholar

    [2]

    Prabhakar P, Giridhar S 2019 Indian J. Pharm. Educ. 53 563Google Scholar

    [3]

    Novena L. M, Athimoolam S, Anitha R, Bahadur S A 2021 J. Mol. Struct. 1249 2022Google Scholar

    [4]

    Akshita J, Mansi P, Neelima D, Kunal C, Maninder 2022 J. Pharm. 111 2788Google Scholar

    [5]

    George C P, Thorat S H, Shaligram P S, Suresha P R, Gonnade R G 2020 Crystengcomm 22 6137Google Scholar

    [6]

    Sakamoto N, Tsuno N, Koyama R, Gato K, Titapiwatanakun V, Takatori K, Fukami T 2021 Chem. Pharm. Burl. 69 1995Google Scholar

    [7]

    Liu L X, Liu M, Zhang Y, Feng Y, Wu L, Zhang L, Zhang Y J, Liu Y L, Zou D Y 2022 J. Mol. Struct. 1250 1318

    [8]

    Yong D, Hong X F, Qi Z, Hui L Z, Zhi H 2016 Spectrochim. Acta. A 153 580Google Scholar

    [9]

    Wan M, Fang J Y, Xue J D, Liu J J, Qin J Y, Hong Z, Li J S, D Y 2022 Int. J. Mol. Sci. 23 8550Google Scholar

    [10]

    段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智 2021 物理学报 70 248702Google Scholar

    Duan T C, Yan S j, Zhao Y, Sun T Y, Li Y G, Zhu Z 2021 Acta Phys. Sin. 70 248702Google Scholar

    [11]

    郑转平, 刘榆杭, 曾方, 赵帅宇, 朱礼鹏 2023 物理学报 72 083201Google Scholar

    Zheng Z P, Liu Y H, Zeng F, Zhao S Y, Zhu L P 2023 Acta Phys. Sin. 72 083201Google Scholar

    [12]

    Cai Q, Xue J D, Wang Q, Du Y 2017 Spectrochim. Acta. A 186 29Google Scholar

    [13]

    Wang P F, Zhao J T, Zhang Y M, Zhu Z J, Liu L Y, Zhao H G, Yang X C, Yang X N, Sun X H, He M G 2022 Int. J. Pharmaceut. 620 121759Google Scholar

    [14]

    Margaret D, Mizuki M, Kei H, Timothy K 2020 J. Phys. Chem. A 124 9793Google Scholar

    [15]

    Luczynska, Katarzyna, Druzbicki, Kacper, Lyczko, Krzysztof, Dobrowolski 2015 J. Phys. Chem. B 119 6852Google Scholar

    [16]

    Adrieli S H, Matheus G L, Radharani B 2022 Ind. Crop. Prod. 177 114501Google Scholar

    [17]

    Yao T M, Srinivas J W 2022 Food Hydrocolloids 126 107466Google Scholar

    [18]

    Saffarionpour S, Diosady L L 2022 Curr. Opin. Food. Sci. 43 155Google Scholar

    [19]

    Sakineh M, Ali H A, Pouya M 2020 Chromatographia 83 1293Google Scholar

    [20]

    程桂林, 邓彩赟, 蒋成君 2018 中国现代应用药学 35 5Google Scholar

    Cheng G L, Deng G Y, Jiang C J 2018 Chin. J. Mod. Drug App. 35 5Google Scholar

    [21]

    Ribas M M, Sakata G S, Santos A E, Magro C D, Aguiar G P, Vladimir M L 2019 J. Supercrit. Fluid. 152 104564Google Scholar

    [22]

    Indumathi S, Jenna S M, Sohrab R, Sameer D V 2018 J. Chem. Data. 63 3652Google Scholar

    [23]

    邓彩赟, 蒋成君 2018 浙江科技学院学报 30 16Google Scholar

    Deng C Y, Jiang C J 2018 J. Zhejiang Univ. Sci. B 30 16Google Scholar

    [24]

    Roothan C C 1951 Rev. Mod. Phys. 23 69Google Scholar

    [25]

    Stephens P J, Devlin F J, Chabalowski C F 1994 J. Phys. Chem. 98 11623Google Scholar

    [26]

    Chen T, Yu L X, Tang Z Q, Li Z, Hu F G 2022 Chem. Phys. 562 111676Google Scholar

    [27]

    Otsuka Y T, Ito A, Takeuchi M, Sasaki T, Tanaka H J 2020 J. Brug Deliv. Sci. Tec. 56 101215Google Scholar

    [28]

    Hjorth H T, Jan K, Arvid M, Bertil S, Znzell C R, Eric J B 1982 Acta Chem. Sca. 36 475Google Scholar

    [29]

    Wunderlich H, Mootz D 1971 Acta Cry. Sect. B 27 1684Google Scholar

  • [1] 郑转平, 刘榆杭, 曾方, 赵帅宇, 朱礼鹏. 基于太赫兹光谱的DL-谷氨酸及其一水合物的定性及定量研究. 物理学报, 2023, 72(8): 083201. doi: 10.7498/aps.72.20222314
    [2] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [3] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [5] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [6] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [7] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [8] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器. 物理学报, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [9] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [10] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [11] 刘海, 李启楷, 何远航. 六硝基六氮杂异伍兹烷/2, 4, 6-三硝基甲苯共晶冲击起爆过程的分子动力学模拟. 物理学报, 2015, 64(1): 018201. doi: 10.7498/aps.64.018201
    [12] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择. 物理学报, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [13] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [14] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [15] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [16] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [17] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [18] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验. 物理学报, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [19] 朱耀产, 王锦程, 杨根仓, 杨玉娟. 三种变速条件下共晶生长的多相场法模拟. 物理学报, 2007, 56(9): 5542-5547. doi: 10.7498/aps.56.5542
    [20] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究. 物理学报, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
计量
  • 文章访问数:  2918
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-06-21
  • 上网日期:  2023-07-07
  • 刊出日期:  2023-09-05

/

返回文章
返回