搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于太赫兹光谱的DL-谷氨酸及其一水合物的定性及定量研究

郑转平 刘榆杭 曾方 赵帅宇 朱礼鹏

引用本文:
Citation:

基于太赫兹光谱的DL-谷氨酸及其一水合物的定性及定量研究

郑转平, 刘榆杭, 曾方, 赵帅宇, 朱礼鹏

Qualitative and quantitative study on DL-glutamic acid and its monohydrate using terahertz spectra

Zheng Zhuan-Ping, Liu Yu-Hang, Zeng Fang, Zhao Shuai-Yu, Zhu Li-Peng
PDF
HTML
导出引用
  • 许多氨基酸分子的平动、转动及振动均落在太赫兹(THz)波段, 通过其在THz波段的特征指纹峰, 可以对氨基酸进行定性及定量研究. 本文利用太赫兹时域光谱技术测量了DL-谷氨酸及其一水合物在0.5—3.0 THz的室温太赫兹吸收谱, 发现二者的太赫兹特征峰存在明显差异. 基于DL-谷氨酸一水合物特征吸收峰(1.24 THz)在不同样品浓度下吸收幅度的变化, 对二者的混合样品进行了定量分析, 并对定量解析式进行了反推验证. 最后, 基于密度泛函理论对DL-谷氨酸及其一水合物进行了量化模拟, 在理论数据与实验峰匹配情况下, 对实验所得THz吸收峰的来源进行了讨论归纳. 研究结果表明, DL-谷氨酸及其一水合物的THz特征峰 (<2.80 THz)来源于分子间作用模式, 其余吸收峰来源于分子间与分子内的共同作用模式.
    The rotation, translation, and vibration of many amino acid molecules fall in the terahertz (THz) range, thus qualitative and quantitative researches of amino acids can be carried out through their THz absorption characteristic fingerprint peaks. In this work, the room-temperature THz absorption spectra of DL-glutamic acid and its monohydrate at 0.5–3.0 THz are measured by utilizing terahertz time-domain spectroscopy (THz-TDS). It is found that the THz characteristic peaks of these two amino acids are obviously different from each other. Moreover, according to the changes of the absorption amplitude of the characteristic absorption peak (1.24 THz) of DL-glutamate monohydrate at different sample concentrations, the mixed samples of DL-glutamate and its monohydrate are quantitatively analyzed, and the quantitative analysis formula is verified. In addition, the optical mode of DL-glutamic acid and its monohydrate in THz region are predicted by using density functional theory (DFT). On condition that the theoretical data are matched with the experimental peaks, the origins of THz absorption peaks obtained in the experiment are discussed and summarized. The results show that the THz characteristic peaks (<2.80 THz) of DL-glutamic acid and its monohydrate come from the intermolecular interactions, and the other absorption peaks result from the combination of intermolecular and intramolecular interactions.
      通信作者: 郑转平, zhengzhuanp@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104368, 11604263)资助的课题
      Corresponding author: Zheng Zhuan-Ping, zhengzhuanp@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104368, 11604263).
    [1]

    Hui Z Q, Xu W Z, Li X H, Guo P G, Zhang Y, Liu J S 2019 Nanoscale 11 6045Google Scholar

    [2]

    侯磊, 王俊喃, 王磊, 施卫 2021 物理学报 70 243202Google Scholar

    Hou L, Wang J N, Wang L, Shi W 2021 Acta Phys. Sin. 70 243202Google Scholar

    [3]

    Zhang B, Li S P, Wang C Y, Zou T, Pan T T, Zhang J B, Zou X, Ren G H, Zhao H W 2018 Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 40Google Scholar

    [4]

    Neu J, Nikonow H, Schmuttenmaer C A 2018 J. Phys. Chem. A 122 5978Google Scholar

    [5]

    Liu Y, Guo X T, Zhang X, Cao S Y, Ding X Q 2018 Crit. Rev. Anal. Chem. 37 341Google Scholar

    [6]

    Kleist E M, Korter T M 2020 Anal. Chem. 92 1211Google Scholar

    [7]

    Hui Y, Fan W H, Chen X, Liu L T, Wang H Q, Jiang X Q 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 258 119825Google Scholar

    [8]

    Zheng Z P, Fan W H, Li H, Tang J 2014 J. Mol. Spectrosc. 296 4Google Scholar

    [9]

    杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203Google Scholar

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J G 2014 Acta Phys. Sin. 63 133203Google Scholar

    [10]

    Pan T T, Li S P, Zou T, Zheng Y, Zhang B, Wang C Y, Zhang J B, He M J, Zhao H 2017 Spectrochim. Acta A Mol. Biomol. Spectrosc. 178 19Google Scholar

    [11]

    Dunitz D J, Schweizer W B 1995 Acta Crystallogr. C. 51 1377Google Scholar

    [12]

    Ciunik Z, Glowiak T 1983 Acta Crystallogr. C 39 1271Google Scholar

    [13]

    Paive M F 2017 . Ph. D. Dissertation (Fortaleza: Federal University of Ceare)

    [14]

    Huang P J, Ma Y H, Li X, Hou D B, Cai J H, Zhang G X 2015 SPIE. 9795 979531Google Scholar

    [15]

    Leos S, A. Terán T Q, García P, Archila A, Cabrera R 2012 J. Food. Sci. 77 118Google Scholar

    [16]

    Wang A P, Gong X, Liu X 2016 Phys. Chem. Testing 52 369Google Scholar

    [17]

    Lee J W, Thomas L C, Schmidt S J, Agric J 2011 Food. Chem. 59 684Google Scholar

    [18]

    Zhang R, Mcewen J S, Gao F, Wang Y, Szanyi J, Peden C H F 2014 Acs. Catalysis. 4 4093Google Scholar

    [19]

    Fug F, Rohe K, Vargas J, Nies C, Possart W 2016 Polymer 99 671Google Scholar

    [20]

    Cortez V M, Fierro C, Farias M, Vargas O, Flores A, Mani G 2016 J. Chem. Phys. 472 81Google Scholar

    [21]

    Mariko Y, Fumiaki M, Koh J Y, Masahiko T, Masanori H 2005 Appl. Phys. 86 53903Google Scholar

    [22]

    Michael R, Williams C, Alan B, True A, Izmaylov F, Timothy A, French Z, Konstanze S, Charles A S 2011 Phys. Chem. Chem. Phys. 13 11719Google Scholar

    [23]

    Hu M D, Tang M G, Wang H B, Zhang M K, Zhu H P, Yang Z B, Zhou H L, Zhang H, Hu J, Guo Y S, Xiao W, Liao Y S 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 254 119611Google Scholar

    [24]

    Zhu Z Q, Bian Y G, Zhang X, Zeng R N, Yang B 2022 Spectrochim. Acta A Mol. Biomol. Spectrosc. 275 121150Google Scholar

  • 图 1  DL-Glu及DL-Glu·H2O的分子结构(a), (b)及晶胞结构(c), (d)

    Fig. 1.  Molecular structures (a), (b) and unit cell structures (c), (d) of DL-Glu and DL-Glu·H2O.

    图 2  DL-Glu及DL-Glu·H2O的XRD谱

    Fig. 2.  XRD spectra of DL-Glu and DL-Glu·H2O.

    图 3  DL-Glu·H2O (a)和DL-Glu (b)的THz实验谱

    Fig. 3.  THz experimental spectra of DL-Glu·H2O (a) and DL-Glu (b).

    图 4  1.24 THz处DL-Glu及DL-Glu·H2O不同混合比例下的实验谱(a), 1.24 THz处吸收幅度与样品浓度的线性关系(b)

    Fig. 4.  THz spectra of DL-Glu and DL-Glu·H2O in different proportions at 1.24 THz (a), the linear relationship between absorption amplitude and sample concentration at 1.24 THz (b).

    图 5  DL-Glu及DL-Glu·H2O的THz实验和固态模拟谱

    Fig. 5.  THz experimental and solid-state calculated spectra of DL-Glu and DL-Glu·H2O.

    图 6  DL-Glu·H2O在2.87 THz (a)和3.0 THz (b)的分子作用模式

    Fig. 6.  Molecular interactional modes of DL-Glu·H2O at 2.87 THz (a) and 3.0 THz (b).

    表 1  DL-Glu及DL-Glu·H2O的实验(Exp.)和PBE理论计算谱结果(单位: THz)

    Table 1.  Experimental (Exp.) and PBE theoretical results of DL-Glu and DL-Glu·H2O (in THz).

    DL-GluDL-Glu·H2O
    Exp.PBE描述ExpPBE描述
    1.631.66(4.74)1绕晶胞 a 轴转动1.241.51(1.23)沿晶胞 a 轴平动
    2.381.691.72(12.43)绕晶胞 a 轴转动
    2.612.58(3.89)绕晶胞 c 轴转动1.921.78(1.69)绕晶胞 a 轴转动
    2.59(3.96)绕晶胞 a 轴转动2.222.16(6.76)绕晶胞 b 轴转动
    2.962.84(22.54)官能团的振动2.30(23.11)绕晶胞 a 轴转动
    2.90(4.10)绕晶胞 a 轴转动2.382.49(5.98)绕晶胞 a 轴转动
    2.58(3.47)绕晶胞 b 轴转动
    2.812.85(4.41)绕晶胞 c 轴转动
    2.87(27.11)绕晶胞 c 轴转动
    3.0(7.23)官能团的振动
    注: 1括号里的是红外强度(kM/mol).
    下载: 导出CSV
  • [1]

    Hui Z Q, Xu W Z, Li X H, Guo P G, Zhang Y, Liu J S 2019 Nanoscale 11 6045Google Scholar

    [2]

    侯磊, 王俊喃, 王磊, 施卫 2021 物理学报 70 243202Google Scholar

    Hou L, Wang J N, Wang L, Shi W 2021 Acta Phys. Sin. 70 243202Google Scholar

    [3]

    Zhang B, Li S P, Wang C Y, Zou T, Pan T T, Zhang J B, Zou X, Ren G H, Zhao H W 2018 Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 40Google Scholar

    [4]

    Neu J, Nikonow H, Schmuttenmaer C A 2018 J. Phys. Chem. A 122 5978Google Scholar

    [5]

    Liu Y, Guo X T, Zhang X, Cao S Y, Ding X Q 2018 Crit. Rev. Anal. Chem. 37 341Google Scholar

    [6]

    Kleist E M, Korter T M 2020 Anal. Chem. 92 1211Google Scholar

    [7]

    Hui Y, Fan W H, Chen X, Liu L T, Wang H Q, Jiang X Q 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 258 119825Google Scholar

    [8]

    Zheng Z P, Fan W H, Li H, Tang J 2014 J. Mol. Spectrosc. 296 4Google Scholar

    [9]

    杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203Google Scholar

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J G 2014 Acta Phys. Sin. 63 133203Google Scholar

    [10]

    Pan T T, Li S P, Zou T, Zheng Y, Zhang B, Wang C Y, Zhang J B, He M J, Zhao H 2017 Spectrochim. Acta A Mol. Biomol. Spectrosc. 178 19Google Scholar

    [11]

    Dunitz D J, Schweizer W B 1995 Acta Crystallogr. C. 51 1377Google Scholar

    [12]

    Ciunik Z, Glowiak T 1983 Acta Crystallogr. C 39 1271Google Scholar

    [13]

    Paive M F 2017 . Ph. D. Dissertation (Fortaleza: Federal University of Ceare)

    [14]

    Huang P J, Ma Y H, Li X, Hou D B, Cai J H, Zhang G X 2015 SPIE. 9795 979531Google Scholar

    [15]

    Leos S, A. Terán T Q, García P, Archila A, Cabrera R 2012 J. Food. Sci. 77 118Google Scholar

    [16]

    Wang A P, Gong X, Liu X 2016 Phys. Chem. Testing 52 369Google Scholar

    [17]

    Lee J W, Thomas L C, Schmidt S J, Agric J 2011 Food. Chem. 59 684Google Scholar

    [18]

    Zhang R, Mcewen J S, Gao F, Wang Y, Szanyi J, Peden C H F 2014 Acs. Catalysis. 4 4093Google Scholar

    [19]

    Fug F, Rohe K, Vargas J, Nies C, Possart W 2016 Polymer 99 671Google Scholar

    [20]

    Cortez V M, Fierro C, Farias M, Vargas O, Flores A, Mani G 2016 J. Chem. Phys. 472 81Google Scholar

    [21]

    Mariko Y, Fumiaki M, Koh J Y, Masahiko T, Masanori H 2005 Appl. Phys. 86 53903Google Scholar

    [22]

    Michael R, Williams C, Alan B, True A, Izmaylov F, Timothy A, French Z, Konstanze S, Charles A S 2011 Phys. Chem. Chem. Phys. 13 11719Google Scholar

    [23]

    Hu M D, Tang M G, Wang H B, Zhang M K, Zhu H P, Yang Z B, Zhou H L, Zhang H, Hu J, Guo Y S, Xiao W, Liao Y S 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 254 119611Google Scholar

    [24]

    Zhu Z Q, Bian Y G, Zhang X, Zeng R N, Yang B 2022 Spectrochim. Acta A Mol. Biomol. Spectrosc. 275 121150Google Scholar

  • [1] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐. 姜黄素与邻苯二酚共晶的太赫兹光谱. 物理学报, 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [2] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [3] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [5] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [6] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [7] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [8] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器. 物理学报, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [9] 朱金龙, 赵予生, 靳常青. 水合物研制、结构与性能及其在能源环境中的应用. 物理学报, 2019, 68(1): 018203. doi: 10.7498/aps.68.20181639
    [10] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [11] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [12] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [13] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [14] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [15] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [16] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [17] 李红星, 陶春辉, 周建平, 邓居智, 邓显明, 方根显. 非胶结含水合物沉积物修正等效介质速度模型及其地震波场特征研究. 物理学报, 2009, 58(11): 8083-8093. doi: 10.7498/aps.58.8083
    [18] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
    [19] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验. 物理学报, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [20] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究. 物理学报, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
计量
  • 文章访问数:  3548
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-02-15
  • 上网日期:  2023-04-03
  • 刊出日期:  2023-04-20

/

返回文章
返回