-
The spontaneous evolution from Rydberg atoms in different fine states to plasmas is investigated. Two-photon excitation is used to excite ultracold cesium atoms from 6S1/2 to 47D3/2 and 47D5/2 Rydberg states, respectively. The ramp electric field is used to ionize the Rydberg atoms and drive the ions to the micro-channel plate detector. In this experiment, The atom number of 47D5/2 state, which has a high oscillator strength compared with 47D3/2, is about 7 times larger than that of 47D3/2 state. Based on the different initial atom numbers of two fine states, the evolutions of plasma and Rydberg atoms are observed. The initial ionization time of Rydberg atoms and avalanche ionization rate of different states are presented. The initial ionization of Rydberg atoms is ascribed to the combining effect of state transfer from repulsive interaction to attractive interaction induced by the blackbody radiation and superradiation and Rydberg atoms collision. Moreover, the avalanche ionization and production of plasma are explained as being due to the rapid collision between Rydberg atoms and electrons in a local potential trap produced by positive ions.
[1] Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776
[2] Killian T C, Lim M J, Kulin S, Dumke R, Bergeson S D, and Rolston S L 2001 Phys. Rev. Lett. 86 3759
[3] Robinson M P, Laburthe Tolra B, Noel Michael W, Gallagher T F, Pillet P 2000 Phys. Rev. Lett. 85 4466
[4] Amthor T, Reetz-Lamour M, Westermann S, Denskat J, Weidemller M 2007 Phys. Rev. Lett. 98 023004
[5] Amthor T, Reetz-Lamour M, Giese S, Weidemller M 2007 Phys. Rev. A 76 054702
[6] Zhang L J, Feng Z G, Zhao J M, Li C Y, Jia S T 2010 Opt. Expess 18 11599
[7] Robert-de-Saint-Vincent M, Hofmann C S, Schempp H, Gnter G, Whitlock S, Weidemller M 2013 Phys. Rev. Lett. 110 045004
[8] Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835
[9] Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]
[10] Wang L M, Liu X M, Zhang H Che J L, Yang Y G, Zhao J M, Jia S T 2012 J. Phys. Soc. Jpn. 81 104302
[11] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Cô té R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001
[12] Robicheaux F 2005 J. Phys. B 38 S333
[13] Zhang L J, Feng Z G, Li A L, Zhao J M, Li C Y, Jia S T 2008 Chin. Phys. Lett. 25 1362
-
[1] Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776
[2] Killian T C, Lim M J, Kulin S, Dumke R, Bergeson S D, and Rolston S L 2001 Phys. Rev. Lett. 86 3759
[3] Robinson M P, Laburthe Tolra B, Noel Michael W, Gallagher T F, Pillet P 2000 Phys. Rev. Lett. 85 4466
[4] Amthor T, Reetz-Lamour M, Westermann S, Denskat J, Weidemller M 2007 Phys. Rev. Lett. 98 023004
[5] Amthor T, Reetz-Lamour M, Giese S, Weidemller M 2007 Phys. Rev. A 76 054702
[6] Zhang L J, Feng Z G, Zhao J M, Li C Y, Jia S T 2010 Opt. Expess 18 11599
[7] Robert-de-Saint-Vincent M, Hofmann C S, Schempp H, Gnter G, Whitlock S, Weidemller M 2013 Phys. Rev. Lett. 110 045004
[8] Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835
[9] Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]
[10] Wang L M, Liu X M, Zhang H Che J L, Yang Y G, Zhao J M, Jia S T 2012 J. Phys. Soc. Jpn. 81 104302
[11] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Cô té R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001
[12] Robicheaux F 2005 J. Phys. B 38 S333
[13] Zhang L J, Feng Z G, Li A L, Zhao J M, Li C Y, Jia S T 2008 Chin. Phys. Lett. 25 1362
Catalog
Metrics
- Abstract views: 6984
- PDF Downloads: 393
- Cited By: 0