Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of positive glow corona discharge initiated from long ground wire under thundercloud field

Sima Wen-Xia Fan Shuo-Chao Yang Qing Wang Qi

Citation:

Numerical simulation of positive glow corona discharge initiated from long ground wire under thundercloud field

Sima Wen-Xia, Fan Shuo-Chao, Yang Qing, Wang Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the slow effect of electric field of thundercloud, a kind of positive glow corona without streamers is initiated from the surface of object near the ground, and a large number of positive space charges are injected into the surrounding space, consequently, lighting targets selected by the lighting leader can be changed. In this paper, a numerical simulation of positive glow corona discharge initiated from the long ground wire with the effect of the electric field of thundercloud is presented. In consideration of the attachment and collision effects between positive ions and other ions, an accurate two-dimensional positive glow corona model is established. Meanwhile, a high-voltage corona discharge experiment is done in the laboratory to measure the corona current in different background electric fields, and the results are compared with the simulation results in order to verify the correctness of the model established in this paper. According to the established model, the initiation and development progress of glow corona with the effect of thundercloud are simulated and the corona current, laws of positive ion density distribution and migration are revealed. Results show that positive ions generated from the glow corona discharge present a circular symmetric distribution in the plane perpendicular to the ground wire at their early stage of migration, but the distribution is shaped as an elongated oval later when the ions move farther from the ground wire for the effect of electric field of thundercloud, that is to say, the overwhelming majority of the ions will be finally distributed in the upper area of the ground wire and gradually migrate towards the thundercloud. Due to the accumulation effects of positive ions in the upper migration area near the ground wire, the positive space charge background is formed, which has a damping effect on the electron beam. Thus the formation of electron avalanche is suppressed and the probability for electron avalanche to be converted into streamer is reduced. Meanwhile, the positive space charge background improves the collision surface of the gas and increases the compound probability between positive ions and electrons. Therefore, the conversion processes from electron avalanche and streamer to upward leader are impeded and the initiation of upward leader is suppressed.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177182) and the Innovative Research Groups of China (Grant No. 51321063).
    [1]

    Chauzy S, Raizonville P 1982 J. Geophys. Res. 87 3143

    [2]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [3]

    Li X C, Bao W T, Jia P Y, Zhao H H, Di C, Chen J Y 2014 Chin. Phys. B 23 095202

    [4]

    Rakov V, Uman M A 2007 Lightning: Physics and Effects (1st Ed.) (Cambridge: Cambridge University Press) pp1-20

    [5]

    Waters R T, Stark W B 1975 J. Phys. D: Appl. Phys. 8 416

    [6]

    Uhlig C A E 1956 Proceedings of High Voltage Symposium on National Research Council of Canada Ottawa, Canada, 1956 pp15.1-15.13

    [7]

    Bazelyan E M, Raizer Y P 2000 Phys.-Usp. 43 701

    [8]

    Aleksandrov N L, Bazelyan E M, Carpenter R B J, Drabkin M M, Raizer Y P 2001 J. Phys. D: Appl. Phys. 34 3256

    [9]

    Aleksandrov N L, Bazelyan E M, Drabkin M M, Carpenter R B, Raizer Y P 2002 Plasma Phys. Rep. 28 953

    [10]

    Aleksandrov N L, Bazelyan E M, D’Alessandro F, Raizer Y P 2005 J. Phys. D: Appl. Phys. 38 1225

    [11]

    Bazelyan E M, Raizer Y P, Aleksandrov N L 2008 Plasma Sources Sci. Technol. 17 024015

    [12]

    Bazelyan E M, Raizer Y P, Aleksandrov N L, D’Alessandro F 2009 Atmos. Res. 94 436

    [13]

    Rizk F A M 2008 US Patent 7 468 879

    [14]

    Rizk F A M 2011 IEEE Trans. Power Deliv. 26 1156

    [15]

    Becerra M 2013 J. Phys. D: Appl. Phys. 46 135205

    [16]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 3708

    [17]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 4695

    [18]

    Gopalakrishnan V, Pawar S D, Murugavel P, Johare K P 2011 J. Atmos. Sol.-Terr. Phys. 73 1876

    [19]

    Soula S, Chauzy S 1991 J. Geophys. Res. 96 22327

    [20]

    Peek F W 1929 Dielectric Phenomena in High-Voltage Engineering (3rd Ed.) (New York: McGraw-Hill) pp48-108

    [21]

    Wesselingh J A, Krishna R 2000 Mass Transfer in Multicomponent Mixtures (1st Ed.) (The Netherlands: Delft University Press) pp95-103

    [22]

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) (3rd Ed.) pp37-63 (in Chinese) [郭硕鸿 2008 电动力学 (第三版) (北京: 高等教育出版社) 第37-63页]

    [23]

    Qie X, Soula S, Chauzy S 1994 Ann. Geopysicae 12 1218

    [24]

    Cobine J D 1970 Gaseous Conductors: Theory and Engineering Applications (2nd Ed.) (New York: McGraw-Hill) pp259-280

    [25]

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese) [廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 物理学报 61 245201]

    [26]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001

    [27]

    Wu F F 2014 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [伍飞飞 2014 博士学位论文 (重庆: 重庆大学)]

    [28]

    He W, Liu X X, Xian R C, Chen S H, Liao R J, Yang F, Xiao H G 2013 Plasma Sci. Technol. 15 335

    [29]

    Aleksandrov N L, Bazelyan E M, Raizer Y P 2005 Plasma Phys. Rep. 31 75

  • [1]

    Chauzy S, Raizonville P 1982 J. Geophys. Res. 87 3143

    [2]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [3]

    Li X C, Bao W T, Jia P Y, Zhao H H, Di C, Chen J Y 2014 Chin. Phys. B 23 095202

    [4]

    Rakov V, Uman M A 2007 Lightning: Physics and Effects (1st Ed.) (Cambridge: Cambridge University Press) pp1-20

    [5]

    Waters R T, Stark W B 1975 J. Phys. D: Appl. Phys. 8 416

    [6]

    Uhlig C A E 1956 Proceedings of High Voltage Symposium on National Research Council of Canada Ottawa, Canada, 1956 pp15.1-15.13

    [7]

    Bazelyan E M, Raizer Y P 2000 Phys.-Usp. 43 701

    [8]

    Aleksandrov N L, Bazelyan E M, Carpenter R B J, Drabkin M M, Raizer Y P 2001 J. Phys. D: Appl. Phys. 34 3256

    [9]

    Aleksandrov N L, Bazelyan E M, Drabkin M M, Carpenter R B, Raizer Y P 2002 Plasma Phys. Rep. 28 953

    [10]

    Aleksandrov N L, Bazelyan E M, D’Alessandro F, Raizer Y P 2005 J. Phys. D: Appl. Phys. 38 1225

    [11]

    Bazelyan E M, Raizer Y P, Aleksandrov N L 2008 Plasma Sources Sci. Technol. 17 024015

    [12]

    Bazelyan E M, Raizer Y P, Aleksandrov N L, D’Alessandro F 2009 Atmos. Res. 94 436

    [13]

    Rizk F A M 2008 US Patent 7 468 879

    [14]

    Rizk F A M 2011 IEEE Trans. Power Deliv. 26 1156

    [15]

    Becerra M 2013 J. Phys. D: Appl. Phys. 46 135205

    [16]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 3708

    [17]

    Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 4695

    [18]

    Gopalakrishnan V, Pawar S D, Murugavel P, Johare K P 2011 J. Atmos. Sol.-Terr. Phys. 73 1876

    [19]

    Soula S, Chauzy S 1991 J. Geophys. Res. 96 22327

    [20]

    Peek F W 1929 Dielectric Phenomena in High-Voltage Engineering (3rd Ed.) (New York: McGraw-Hill) pp48-108

    [21]

    Wesselingh J A, Krishna R 2000 Mass Transfer in Multicomponent Mixtures (1st Ed.) (The Netherlands: Delft University Press) pp95-103

    [22]

    Guo S H 2008 Electrodynamics (Beijing: Higher Education Press) (3rd Ed.) pp37-63 (in Chinese) [郭硕鸿 2008 电动力学 (第三版) (北京: 高等教育出版社) 第37-63页]

    [23]

    Qie X, Soula S, Chauzy S 1994 Ann. Geopysicae 12 1218

    [24]

    Cobine J D 1970 Gaseous Conductors: Theory and Engineering Applications (2nd Ed.) (New York: McGraw-Hill) pp259-280

    [25]

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese) [廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 物理学报 61 245201]

    [26]

    Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001

    [27]

    Wu F F 2014 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [伍飞飞 2014 博士学位论文 (重庆: 重庆大学)]

    [28]

    He W, Liu X X, Xian R C, Chen S H, Liao R J, Yang F, Xiao H G 2013 Plasma Sci. Technol. 15 335

    [29]

    Aleksandrov N L, Bazelyan E M, Raizer Y P 2005 Plasma Phys. Rep. 31 75

  • [1] Liu Zai-Hao, Liu Ying-Hua, Xu Bo-Ping, Yin Pei-Qi, Li Jing, Wang Yi-Shan, Zhao Wei, Duan Yi-Xiang, Tang Jie. Two-dimensional numerical simulation of pre-ionized direct-current glow discharge in atmospheric helium. Acta Physica Sinica, 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [2] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting. Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [3] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [4] Chai Yu, Zhang Ni, Liu Jie, Yin Ning, Liu Shu-Lin, Zhang Jing-Yuan. Two-dimensional simulation of dynamic characteristics of N2–O2 corona discharge at micro scale. Acta Physica Sinica, 2020, 69(16): 165202. doi: 10.7498/aps.69.20200095
    [5] Zhang Zeng-Xing, Li Dong. Novel p-n junctions based on ambipolar two-dimensional crystals. Acta Physica Sinica, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [6] Ru Jia-Sheng, Min Dao-Min, Zhang Chong, Li Sheng-Tao, Xing Zhao-Liang, Li Guo-Chang. Research on surface potential decay characteristics of epoxy resin charged by direct current corona. Acta Physica Sinica, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [7] Wang Wei, Yang Lan-Jun, Liu Shuai, Huang Yi-Zhi, Huang Dong, Wu Kai. Theoretical and experimental study of thrust produced by corona discharge exciter in wire-aluminum foil electrode configration. Acta Physica Sinica, 2015, 64(10): 105204. doi: 10.7498/aps.64.105204
    [8] Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong. Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure. Acta Physica Sinica, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [9] Wu Fei-Fei, Liao Rui-Jin, Yang Li-Jun, Liu Xing-Hua, Wang Ke, Zhou Zhi. Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge. Acta Physica Sinica, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [10] Liu Lei, Li Yong-Dong, Wang Rui, Cui Wan-Zhao, Liu Chun-Liang. Particle-in-cell simulation of corona discharge in low pressure in stepped impedance transformer. Acta Physica Sinica, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [11] Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Physica Sinica, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [12] Ji Shi-Ming, Weng Xiao-Xing, Tan Da-Peng. Analytical method of softness abrasive two-phase flow field based on 2D model of LSM. Acta Physica Sinica, 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
    [13] Yuan Gui-Fang, Han Li-Hong, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Two-dimensional photonic crystal band gap characteristics. Acta Physica Sinica, 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [14] Qi Bing, Ren Chun-Sheng, Ma Teng-Cai, Wang You-Nian, Wang De-Zhen. Stabilization of the multi-pin to multi-sphere plane negative corona discharge. Acta Physica Sinica, 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [15] Chen Gang-Jin, Xiao Hui-Ming, Xia Zhong-Fu. Charge storage characteristics in hybrid electret film consisting of porous PTFE and PP with negative corona charging. Acta Physica Sinica, 2006, 55(5): 2464-2469. doi: 10.7498/aps.55.2464
    [16] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [17] Ji Zhong-Bao, Xia Zhong-Fu, Shen Li-Li, An Zhen-Lian. The charge storage and its stability in corona charged polypropylene non-woven fabrics used as air filters. Acta Physica Sinica, 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [18] HUO CHONG-RU, ZHU ZHEN-HE, GE PEI-WEN, CHEN DONG. THE STABILITY OF THE CRYSTAL GROWTH FACE IN A MODEL FOR CRYSTAL GROWTH FROM SOLUTION UNDER MICROGRAVITY . Acta Physica Sinica, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [19] QU SHAO-HUA, YAO KAI-LUN, YU BO-MING. STUDY OF THE TWO-DIMENSIONAL NEXT-NEAREST-NEIG-HBOUR PERCOLATION MODEL. Acta Physica Sinica, 1991, 40(2): 169-174. doi: 10.7498/aps.40.169
    [20] XIA ZHONG-FU, WANG YU-DE, DING HAI, YANG GOO-MAO, SHT DONG-BING, SUN XI-MIN. CORONA CHARGING AT ELEVATED TEMPERATURE AND CHARGE TRANSPORT FOR MYLAR PETP FOILS. Acta Physica Sinica, 1991, 40(12): 1986-1991. doi: 10.7498/aps.40.1986
Metrics
  • Abstract views:  5952
  • PDF Downloads:  903
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2014
  • Accepted Date:  15 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回