Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of optical frequency transfer via fiber

Liu Jie Gao Jing Xu Guan-Jun Jiao Dong-Dong Yan Lu-Lu Dong Rui-Fang Jiang Hai-Feng Liu Tao Zhang Shou-Gang

Citation:

Study of optical frequency transfer via fiber

Liu Jie, Gao Jing, Xu Guan-Jun, Jiao Dong-Dong, Yan Lu-Lu, Dong Rui-Fang, Jiang Hai-Feng, Liu Tao, Zhang Shou-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical clocks are considered as promising candidates for redefining the second in the International System of Units. Compared with microwave clocks, optical clocks are powerful tools for the fundamental research such as the constancy of the fundamental constants, the validity of Einstein’s theory of general relativity, and the predictions of quantum electrodynamics. Recently two research groups have demonstrated the optical clocks with an unprecedented precision level of 10-18, which is two orders better than the present primary frequency standard. Using two Sr optical clocks and three Cs fountain clocks, SYRTE group has demonstrated the definition of second with optical clocks.#br#For redefining the second with optical clocks in the future, the optical clocks from the remote laboratories should have a high precision and the frequency of the optical clocks need to be transferred over a long distance, with extremely high precision. Unfortunately the conventional means of frequency transfer such as two-way satellite time and frequency transfer can reach a 10-16 level in one day which is far below the requirement for an optical clocks. Various methods have been developed to transfer optical frequency signal via optical fibers. Especially a research group from Germany has achieved a frequency transfer stability of 10-19 level in hundreds of seconds with a fiber length of 1840 km.#br#We demonstrate the recent development of optical frequency transfer over a 70-km fiber spool at National Time Service Center. The measurement shows that the compensation for the fiber noise is close to the limitation induced by the fiber delay for the Fourier frequency from 1 Hz to 250 Hz. The transfer stability (Allan deviation) of the fiber link is 1.2×10-15 in 1 s averaging time, and 1.4×10-18 in 10000 s. A preliminary test of the optical frequency transfer over a 100-km spooled fiber is achieved with a stability of roughly one order worse than the 71 km result, 5×10-15 in 1 s.#br#We demonstrate a new scheme of remote compensation for optical frequency transfer via fibers against conventional local compensation method. This new scheme has the advantage of great simplification of the local site, which can find applications in massive extension of star network. The key feature is that we transfer the mixture of the round-trip signal and local reference to the remote user’s end via an auxiliary fiber. At remote site, the fiber noise is measured and compensated by AOM2 accordingly.#br#Transfer stabilities of 13×10-15 in 1 s averaging time and 4.8×10-18 in 10000 s are achieved with the remote fiber noise compensation via a 25 km fiber spool. The demonstrated transfer stability is comparable to that obtained by the local fiber noise compensation method.#br#The future star fiber network of optical frequency transfer can benefit from this method, because the simpler local setup is required and even can be shared in the central site for multitudinous remote users.
    • Funds: Project supported by the Special Fund for Major Scientific Equipment and Instrument Development of the National Natural Science Foundation of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the “Cross and Cooperative” Science and Technology Innovation Team Project of the Chinese Academy of Science, China, and the Key Deployment Project of the Chinese Academy of Sciences, China (Grant No. KJZD-EW-W02).
    [1]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [4]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801

    [5]

    Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573

    [6]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [7]

    Katori H 2011 Nat. Photon. 5 203

    [8]

    Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002

    [9]

    Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043

    [10]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [11]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [12]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [13]

    Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282

    [14]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782

    [15]

    Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625

    [16]

    Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168

    [17]

    Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025

    [18]

    Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35

    [19]

    Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270

    [20]

    Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029

    [21]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518

    [22]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [23]

    Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801

    [24]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777

    [25]

    Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893

  • [1]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [4]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801

    [5]

    Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573

    [6]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [7]

    Katori H 2011 Nat. Photon. 5 203

    [8]

    Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002

    [9]

    Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043

    [10]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [11]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [12]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [13]

    Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282

    [14]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782

    [15]

    Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625

    [16]

    Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168

    [17]

    Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025

    [18]

    Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35

    [19]

    Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270

    [20]

    Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029

    [21]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518

    [22]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [23]

    Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801

    [24]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777

    [25]

    Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893

  • [1] Ma Bo-Wen, Dai Wen, Meng Fei, Tao Jia-Ning, Wu Zi-Ling, Shi Yan-Qing, Fang Zhan-Jun, Hu Ming-Lie, Song You-Jian. Using asynchronous optical sampling to measure timing jitter of electro-optic frequency combs. Acta Physica Sinica, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [3] Chen Fa-Xi, Zhao Kan, Li Li-Bo, Guo Bao-Long. High precision time transfer based on laser wavelength tracking. Acta Physica Sinica, 2022, 71(23): 230702. doi: 10.7498/aps.71.20221460
    [4] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [5] Chen Kai, Zhu Lian-Qing, Niu Hai-Sha, Meng Kuo, Dong Ming-Li. Stress measurement based on 1556 nm fiber laser frequency splitting effect. Acta Physica Sinica, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [6] Song Li-Jun, Zhang Peng-Fei, Wang Xin, Wang Chen-Xi, Li Gang, Zhang Tian-Cai. Characteristics and control of fiber ring resonator. Acta Physica Sinica, 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [7] Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique. Acta Physica Sinica, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [8] Zhang Shu-Lin, Feng Guo-Ying, Zhou Shou-Huan. Fiber modal content analysis based on spatial and spectral Fourier transform. Acta Physica Sinica, 2016, 65(15): 154202. doi: 10.7498/aps.65.154202
    [9] Liu Huan, Gong Ma-Li, Cao Shi-Ying, Lin Bai-Ke, Fang Zhan-Jun. A 303 MHz fundamental repetition rate femtosecond Er:fiber ring laser. Acta Physica Sinica, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [10] Peng Han, Liu Bin, Fu Song-Nian, Zhang Min-Ming, Liu De-Ming. Repetition rate optimization of passively mode-locked fiber laser for high-speed linear optical sampling. Acta Physica Sinica, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [11] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [12] Ruan Jun, Wang Ye-Bing, Chang Hong, Jiang Hai-Feng, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Progress towards primary frequency standard. Acta Physica Sinica, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [13] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [14] Liu Huan, Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun. Er-fiber femtosecond optical frequency comb covering visible light. Acta Physica Sinica, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [15] Jiao Dong-Dong, Gao Jing, Liu Jie, Deng Xue, Xu Guan-Jun, Chen Jiu-Peng, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang. Development and application of communication band narrow linewidth lasers. Acta Physica Sinica, 2015, 64(19): 190601. doi: 10.7498/aps.64.190601
    [16] Ma Xiao-Lu, Li Pei-Li, Guo Hai-Li, Zhang Yi, Zhu Tian-Yang, Cao Feng-Jiao. Cross-phase modulation typed frequency resolved optical gating measurement for ultra-short pulses using a single mode fiber. Acta Physica Sinica, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [17] Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun, Li Tian-Chu. Precise frequency control of an Er-doped fiber comb. Acta Physica Sinica, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [18] Meng Fei, Cao Shi-Ying, Cai Yue, Wang Gui-Zhong, Cao Jian-Ping, Li Tian-Chu, Fang Zhan-Jun. Study of the femtosecond fiber comb and absolute optical frequency measurement. Acta Physica Sinica, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [19] Li Xiao-Qiu, Feng Xiao-Guo, Gao Jin-Song. Optically transparent band-pass frequency selective surface. Acta Physica Sinica, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [20] Jia Wei-Guo, Shi Pei-Ming, Yang Xing-Yu, Zhang Jun-Ping, Fan Guo-Liang. Modulation instability of near frequency propagation regime in polarization-maintaining fibers. Acta Physica Sinica, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
Metrics
  • Abstract views:  7016
  • PDF Downloads:  357
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2014
  • Accepted Date:  11 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回