Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of interface nucleation time of the GaN nucleation layer on the crystal quality of GaN film

Guo Rui-Hua Lu Tai-Ping Jia Zhi-Gang Shang Lin Zhang Hua Wang Rong Zhai Guang-Mei Xu Bing-She

Citation:

Effect of interface nucleation time of the GaN nucleation layer on the crystal quality of GaN film

Guo Rui-Hua, Lu Tai-Ping, Jia Zhi-Gang, Shang Lin, Zhang Hua, Wang Rong, Zhai Guang-Mei, Xu Bing-She
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the influences of the growth time of low-temperature (LT) GaN nucleation layer on the crystal quality and optical properties of GaN film are investigated. It is found that the optimal LT nucleation layer growth time can effectively reduce the crystal defects and is favorable to forming the annihilation of dislocations. GaN films are grown on c-plane sapphire substrates by metal-organic chemical vapor deposition. Crystal quality and optical properties are characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution X-ray diffraction (HRXRD), and photoluminescence spectra, respectively. In the AFM images, the island density decreases as growth time increases, while the size of island becomes larger and the uniformity of island size deteriorates as growth time increases, leading to the phenomenon that the number of interfaces formed during the nucleation island coalescence, first decrease and then increase as detected by SEM, which also induces the screw dislocation density and edge dislocation density to first decrease and then increase as measured by HRXRD. This first-decrease-and-then-increase variation trend is consistent with the first-increase-and-then-decrease variation trend of the ratio of the band edge emission peak intensity to the yellow luminescence peak intensity tested by photoluminescence, which is confirmed by HRXRD. It is shown that GaN islands with different sizes and densities could lead to different mechanisms of dislocation evolution, thereby forming GaN epitaxial layers with different dislocation densities and optical properties. Through controlling the nucleation time, GaN films with the smallest dislocation density could be obtained.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475110, 61404089, 21471111), the Open Research Fund of Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, China (Grant No. 201205), the Key Science and Technology Innovative Research Team of Shanxi Province, China (Grant No. 2012041011), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014021019-1).
    [1]

    Jia H Q, Guo L W, Wang W X, Chen H 2009 Adv. Mater. 21 4641

    [2]

    Xu B S, Zhai L Y, Liang J, Ma S F, Jia H S, Liu X G 2006 J. Cryst. Growth 291 34

    [3]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [4]

    Bao H Q, Li H, Wang G, Song B, Wang W J, Chen X L 2008 J. Cryst. Growth 310 2955

    [5]

    Nakamura S 1991 Jpn. J. Appl. Phys. 30 1705

    [6]

    Zhang J F, Nie Y H, Zhou Y B, Tian K, Ha W, Xiao M, Zhang J C, Hao Y 2014 Chin. Phys. B 23 068102

    [7]

    Lu T P, Li S T, Liu C, Zhang K, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y, Xiao G W, Zhou Y G 2012 Appl. Phys. Lett. 100 141106

    [8]

    Xu B S, Yang D, Wang F, Liang J, Ma S F, Liu X G 2006 Appl. Phys. Lett. 89 074106

    [9]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [10]

    Wang T, Shirahama T, Sun H B, Wang H X, Bai J, Sakai S, Misawa H H 2000 Appl. Phys. Lett. 76 2220

    [11]

    Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L, Yang X D 2011 Chin. Phys. B 20 098503

    [12]

    Kim Y, Subramanya S G, Siegle H, Krug R J, Perlin P, Weber E R 2000 J. Appl. Phys. 88 6032

    [13]

    Wuu W S, Horng R H, Tseng W H, Lin W T, Kung C Y 2000 J. Cryst. Growth 220 235

    [14]

    Li S T, Jiang F Y, Fan G H, Fang W Q, Wang L 2007 Physica B 391 169

    [15]

    Koleske D D, Coltrin M E, Cross K C, Mitchell C C, Allerman A A 2004 J. Cryst. Growth 273 86

    [16]

    Koleske D D, Fischer A J, Allerman A A, Mitchell C C, Cross K C, Kurtz S R, Figiel J J, Fullmer K W, Breiland W G 2002 Appl. Phys. Lett. 81 1940

    [17]

    Chen J, Zhang S M, Zhang B S, Zhu J J, Shen X M, Feng G, Liu J P, Wang Y T, Yang H, Zheng W C 2003 J. Cryst. Growth 256 252

    [18]

    Li X B, Wu J J, Liu N L, Han T, Kang X N, Yu T J, Zhang G Y 2014 Mater. Lett. 132 94

    [19]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [20]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [21]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y L 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 物理学报 62 056101]

    [22]

    Zielińska-Rohozińska E, Regulska M, Harutyunyan V S, Pakula K, Borowski J 2002 Mater. Sci. Engin. B 91-92 441

    [23]

    Wang J X, Wang L S, Yang S Y, Li H J, Zhao G J, Zhang H, Wei H Y, Jiao C M, Zhu Q S, Wang Z G 2014 Chin. Phys. B 23 026801

    [24]

    Xu P Q, Jiang Y, Ma Z G, Deng Z, Lu T P, Du C H, Fang Y T, Zuo P, Chen H 2013 Chin. Phys. Lett. 30 028101

    [25]

    Dunn C G, Koch E F 1957 Acta Metall. 5 548

    [26]

    Taniyasu Y, Kasu M, Makimoto T 2007 J. Cryst. Growth 298 310

    [27]

    Metzger T, Höpler R, Born E, Ambacher O, Stutzmann M, Stömmer R, Schuster M, Göbel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [28]

    Chierchia R, Böttcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918

    [29]

    Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63

    [30]

    Arslan E, Ozturk M K, Duygulu Ö, Kaya A A, Ozcelik S, Ozbay E 2009 Appl. Phys. A 94 73

    [31]

    Saron K M A, Hashim M R, Allam N K 2013 J. Appl. Phys. 113 124304

    [32]

    Zhang L L, Liu Z H, Xiu X Q, Zhang R, Xie Z L 2013 Acta Phys. Sin. 62 208101 (in Chinese) [张李骊, 刘战辉, 修向前, 张荣, 谢自力 2013 物理学报 62 208101]

    [33]

    Cao R T, Xu S R, Zhang J C, Zhao Y, Xue J S, Ha W, Zhang S, Cui P S, Wen H J, Chen X 2014 Chin. Phys. B 23 047804

    [34]

    Zheng Z Y, Chen Z M, Wu H L, Chen Y D, Huang S J, Fan B F, Xian Y L, Wu Z S, Wang G, Jiang H 2014 J. Cryst. Growth 387 52

    [35]

    Fang Z L, Kang J Y, Shen W Z 2008 J. Phys. Chem. C 112 17652

    [36]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L N, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [37]

    Lu T P, Ma Z G, Du C H, Fang Y T, Wu H Y, Jiang Y, Wang L, Dai L G, Jia H Q, Liu W M, Chen H 2014 Sci. Rep. 4 6131

    [38]

    Benamara M, Liliental-Weber Z, Kellermann S, Swider W, Washburn J, Mazur J, Bourret-Courchesne E D 2000 J. Cryst. Growth 218 447

    [39]

    Masataka I, Naoki F, Narihito O, Krishnan B, Motoaki I, Satoshi K, Hiroshi A, Isamu A, Tadashi N, Takashi T, Akira B 2007 J. Cryst. Growth 300 136

    [40]

    Zhao L B, Yu T J, Wu J J, Dai T, Yang Z J, Zhang G Y 2010 Appl. Surf. Sci. 256 2236

  • [1]

    Jia H Q, Guo L W, Wang W X, Chen H 2009 Adv. Mater. 21 4641

    [2]

    Xu B S, Zhai L Y, Liang J, Ma S F, Jia H S, Liu X G 2006 J. Cryst. Growth 291 34

    [3]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [4]

    Bao H Q, Li H, Wang G, Song B, Wang W J, Chen X L 2008 J. Cryst. Growth 310 2955

    [5]

    Nakamura S 1991 Jpn. J. Appl. Phys. 30 1705

    [6]

    Zhang J F, Nie Y H, Zhou Y B, Tian K, Ha W, Xiao M, Zhang J C, Hao Y 2014 Chin. Phys. B 23 068102

    [7]

    Lu T P, Li S T, Liu C, Zhang K, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y, Xiao G W, Zhou Y G 2012 Appl. Phys. Lett. 100 141106

    [8]

    Xu B S, Yang D, Wang F, Liang J, Ma S F, Liu X G 2006 Appl. Phys. Lett. 89 074106

    [9]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [10]

    Wang T, Shirahama T, Sun H B, Wang H X, Bai J, Sakai S, Misawa H H 2000 Appl. Phys. Lett. 76 2220

    [11]

    Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L, Yang X D 2011 Chin. Phys. B 20 098503

    [12]

    Kim Y, Subramanya S G, Siegle H, Krug R J, Perlin P, Weber E R 2000 J. Appl. Phys. 88 6032

    [13]

    Wuu W S, Horng R H, Tseng W H, Lin W T, Kung C Y 2000 J. Cryst. Growth 220 235

    [14]

    Li S T, Jiang F Y, Fan G H, Fang W Q, Wang L 2007 Physica B 391 169

    [15]

    Koleske D D, Coltrin M E, Cross K C, Mitchell C C, Allerman A A 2004 J. Cryst. Growth 273 86

    [16]

    Koleske D D, Fischer A J, Allerman A A, Mitchell C C, Cross K C, Kurtz S R, Figiel J J, Fullmer K W, Breiland W G 2002 Appl. Phys. Lett. 81 1940

    [17]

    Chen J, Zhang S M, Zhang B S, Zhu J J, Shen X M, Feng G, Liu J P, Wang Y T, Yang H, Zheng W C 2003 J. Cryst. Growth 256 252

    [18]

    Li X B, Wu J J, Liu N L, Han T, Kang X N, Yu T J, Zhang G Y 2014 Mater. Lett. 132 94

    [19]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [20]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [21]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y L 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 物理学报 62 056101]

    [22]

    Zielińska-Rohozińska E, Regulska M, Harutyunyan V S, Pakula K, Borowski J 2002 Mater. Sci. Engin. B 91-92 441

    [23]

    Wang J X, Wang L S, Yang S Y, Li H J, Zhao G J, Zhang H, Wei H Y, Jiao C M, Zhu Q S, Wang Z G 2014 Chin. Phys. B 23 026801

    [24]

    Xu P Q, Jiang Y, Ma Z G, Deng Z, Lu T P, Du C H, Fang Y T, Zuo P, Chen H 2013 Chin. Phys. Lett. 30 028101

    [25]

    Dunn C G, Koch E F 1957 Acta Metall. 5 548

    [26]

    Taniyasu Y, Kasu M, Makimoto T 2007 J. Cryst. Growth 298 310

    [27]

    Metzger T, Höpler R, Born E, Ambacher O, Stutzmann M, Stömmer R, Schuster M, Göbel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [28]

    Chierchia R, Böttcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918

    [29]

    Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63

    [30]

    Arslan E, Ozturk M K, Duygulu Ö, Kaya A A, Ozcelik S, Ozbay E 2009 Appl. Phys. A 94 73

    [31]

    Saron K M A, Hashim M R, Allam N K 2013 J. Appl. Phys. 113 124304

    [32]

    Zhang L L, Liu Z H, Xiu X Q, Zhang R, Xie Z L 2013 Acta Phys. Sin. 62 208101 (in Chinese) [张李骊, 刘战辉, 修向前, 张荣, 谢自力 2013 物理学报 62 208101]

    [33]

    Cao R T, Xu S R, Zhang J C, Zhao Y, Xue J S, Ha W, Zhang S, Cui P S, Wen H J, Chen X 2014 Chin. Phys. B 23 047804

    [34]

    Zheng Z Y, Chen Z M, Wu H L, Chen Y D, Huang S J, Fan B F, Xian Y L, Wu Z S, Wang G, Jiang H 2014 J. Cryst. Growth 387 52

    [35]

    Fang Z L, Kang J Y, Shen W Z 2008 J. Phys. Chem. C 112 17652

    [36]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L N, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [37]

    Lu T P, Ma Z G, Du C H, Fang Y T, Wu H Y, Jiang Y, Wang L, Dai L G, Jia H Q, Liu W M, Chen H 2014 Sci. Rep. 4 6131

    [38]

    Benamara M, Liliental-Weber Z, Kellermann S, Swider W, Washburn J, Mazur J, Bourret-Courchesne E D 2000 J. Cryst. Growth 218 447

    [39]

    Masataka I, Naoki F, Narihito O, Krishnan B, Motoaki I, Satoshi K, Hiroshi A, Isamu A, Tadashi N, Takashi T, Akira B 2007 J. Cryst. Growth 300 136

    [40]

    Zhao L B, Yu T J, Wu J J, Dai T, Yang Z J, Zhang G Y 2010 Appl. Surf. Sci. 256 2236

  • [1] Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong. The Evolution of Grain Boundary Dislocations in Graphene Induced by Strain: Three-Mode Phase-Field Crystal Method. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] Liu Qing-Bin, Yu Cui, Guo Jian-Chao, Ma Meng-Yu, He Ze-Zhao, Zhou Chuang-Jie, Gao Xue-Dong, Yu Hao, Feng Zhi-Hong. Influence of polycrystalline diamond on silicon-based GaN material. Acta Physica Sinica, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong. Phase diagram prediction and high pressure melting characteristics of GaN. Acta Physica Sinica, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] Qi Ke-Wu, Zhao Yu-Hong, Tian Xiao-Lin, Peng Dun-Wei, Sun Yuan-Yang, Hou Hua. Phase field crystal simulation of effect of misorientation angle on low-angle asymmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [6] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [7] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [8] He Ju-Sheng, Zhang Meng, Zou Ji-Jun, Pan Hua-Qing, Qi Wei-Jing, Li Ping. Analyses of determination conditions of n-GaN dislocation density by triple-axis X-ray diffraction. Acta Physica Sinica, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [9] He Ju-Sheng, Zhang Meng, Pan Hua-Qing, Zou Ji-Jun, Qi Wei-Jing, Li Ping. Determination of dislocation density of a class of n-GaN based on the variable temperature Hall-effect method. Acta Physica Sinica, 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [10] Tang Wen-Hui, Liu Bang-Wu, Zhang Bo-Cheng, Li Min, Xia Yang. Low temperature depositions of GaN thin films by plasma-enhanced atomic layer deposition. Acta Physica Sinica, 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [11] Du Hao, Ni Yu-Shan. Multiscale simulations and ductile-brittle analyses of the atomistic cracks in BCC Ta, Fe and W. Acta Physica Sinica, 2016, 65(19): 196201. doi: 10.7498/aps.65.196201
    [12] He Ju-Sheng, Zhang Meng, Pan Hua-Qing, Qi Wei-Jing, Li Ping. A new method to determine the dislocation density in wurtzite n-GaN. Acta Physica Sinica, 2016, 65(16): 167201. doi: 10.7498/aps.65.167201
    [13] Diwu Min-Jie, Hu Xiao-Mian. Plastic deformation in nanoporous aluminum subjected to high-rate uniaxial compression. Acta Physica Sinica, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [14] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [15] Huang Bin-Bin, Xiong Chuan-Bing, Tang Ying-Wen, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate. Acta Physica Sinica, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [16] Li Lian-He, Liu Guan-Ting. A screw dislocation interacting with a wedge-shaped crack in one-dimensional hexagonal quasicrystals. Acta Physica Sinica, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [17] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] Fang Bu-Qing, Lu Guo, Zhang Guang-Cai, Xu Ai-Guo, Li Ying-Jun. Evolution of stacking-fault-tetrahedron-like structures in copper crystal. Acta Physica Sinica, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [19] Xi Guang-Yi, Hao Zhi-Biao, Wang Lai, Li Hong-Tao, Jiang Yang, Zhao Wei, Ren Fan, Han Yan-Jun, Sun Chang-Zheng, Luo Yi. Dependence of GaN film sheet resistance on the N2 carrier gas percentage. Acta Physica Sinica, 2008, 57(11): 7233-7237. doi: 10.7498/aps.57.7233
    [20] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
Metrics
  • Abstract views:  6256
  • PDF Downloads:  208
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2014
  • Accepted Date:  28 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回