-
As the working frequency of a vacuum electron device reaches the terahertz frequency band, the cross section of the surface wave oscillators (SWO) becomes very small, and the micro-fabrication precision of the device cannot be guaranteed, at the same time, because the electromagnetic field of SWO concentrates on the inner surface in slow wave structure, when the working voltage of surface wave oscillator is very high, the explosive emission probability of the slow wave structure increases greatly, and the explosive emission can influence the working characteristic of the device. This paper analyses the distributing property of the electrical field in the slow wave structure of 0.14 THz SWO. Parameters of the SWO under study are as follows: working voltage is 312 kV, explosive emitted current is 1.67 kA, periodic length of the slow wave structure is 0.7 mm, width of the slot is 0.4 mm, and the height of it is 0.3 mm; cold-test results indicate that the amplitude of the electrical field in the slow wave structure varies sinusoidally; the amplitude of the electrical field reaches a maximum value in the middle of the slow wave structure near its inner surface, and the explosive electron emission can occur most possibly in this position, because the electrical field in the slow wave structure varies with very high working frequency. The explosive emitted electron may bombard back the slow wave structure, and the secondary electrons will be emitted at a certain probability, for which the formula proposed by Vaughan is used to compute the secondary emission yield, and this formula is implemented in the self-developed particle-in-cell code UNIPIC; while the code is used to simulate 0.14 THz SWO with explosive emission in the slow wave structure. In the simulation, the slow wave structure multipactor discharge induced by electrons is also considered; the phase space of the electrons emitted from the slow wave structure shows that the energy of secondary electrons is below 5 keV, so the validity for secondary electron yield is affirmed. Numerical simulation results indicate that because the emitted electrons from the slow wave structure change the distribution character of the electrical field in the slow wave structure, especially the amplitude of the electrical field in the middle of the slow wave structure, the beam-wave interaction is weakened, and as a result, output power decreases from about 22.6 megawatts to only 1.89 megawatts.
-
Keywords:
- terahertz source /
- surface wave oscillator /
- slow wave structure /
- explosive mission
[1] Benford J, Swegle J 1992 High Power Microwaves (Boston: Artech House) ch. 6
[2] Insepov Z, Norem J, Vetizer S, Mahalingam S 2011 AIP Conf. Proc. 1406, Newport, USA, June 1-3, 2011 p523
[3] James Benford, Gregory Benford 1997 IEEE Trans. Plasma Sci. 25 311
[4] Hegeler F, Grabowski C, Schamiloglu E 1998 IEEE Trans. Plasma Sci. 26 275
[5] Norem J, Insepov Z, Huang D, Mahalingam S, Veitzer S 2010 AIP Conf. Proc. 1222 Chicago, USA, July 20-25, 2009 p348
[6] Dong C, Bao R M, Zhao K, Xu C H, Jin W J, Zhong S X 2014 Chin. Phys. B 23 127802
[7] Booske J H 2008 Phys. Plasmas 15 055502
[8] Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]
[9] Wang G Q, Wang J G, Tong C J, Li X Z, Li S, Wang X F, Lu X C 2013 Phys. Plasmas 20 043105
[10] Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Dev. 60 2931
[11] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111
[12] Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
[13] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L Li X Z 2009 Phys. Plasmas 16 033108
[14] Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y 2010 Phys. Plasmas 17 073107
[15] Rodney J, Vaughan M 1993 IEEE Trans. Electron Dev. 40 830
[16] Rodney J, Vaughan M 1989 IEEE Trans. Electron Dev. 36 1963
[17] Furman M A, Pivi M T F 2003 SLAC-PUB-9912
[18] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 物理学报 58 3268]
[19] Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503
-
[1] Benford J, Swegle J 1992 High Power Microwaves (Boston: Artech House) ch. 6
[2] Insepov Z, Norem J, Vetizer S, Mahalingam S 2011 AIP Conf. Proc. 1406, Newport, USA, June 1-3, 2011 p523
[3] James Benford, Gregory Benford 1997 IEEE Trans. Plasma Sci. 25 311
[4] Hegeler F, Grabowski C, Schamiloglu E 1998 IEEE Trans. Plasma Sci. 26 275
[5] Norem J, Insepov Z, Huang D, Mahalingam S, Veitzer S 2010 AIP Conf. Proc. 1222 Chicago, USA, July 20-25, 2009 p348
[6] Dong C, Bao R M, Zhao K, Xu C H, Jin W J, Zhong S X 2014 Chin. Phys. B 23 127802
[7] Booske J H 2008 Phys. Plasmas 15 055502
[8] Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]
[9] Wang G Q, Wang J G, Tong C J, Li X Z, Li S, Wang X F, Lu X C 2013 Phys. Plasmas 20 043105
[10] Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Dev. 60 2931
[11] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111
[12] Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
[13] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L Li X Z 2009 Phys. Plasmas 16 033108
[14] Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y 2010 Phys. Plasmas 17 073107
[15] Rodney J, Vaughan M 1993 IEEE Trans. Electron Dev. 40 830
[16] Rodney J, Vaughan M 1989 IEEE Trans. Electron Dev. 36 1963
[17] Furman M A, Pivi M T F 2003 SLAC-PUB-9912
[18] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 物理学报 58 3268]
[19] Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503
Catalog
Metrics
- Abstract views: 5584
- PDF Downloads: 146
- Cited By: 0