Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical studies on a 0.14 THz coaxial surface wave oscillator with double-ring metamaterial slow wave structure

Guo Wei-Jie Chen Zai-Gao Cai Li-Bing Wang Guang-Qiang Cheng Guo-Xin

Citation:

Numerical studies on a 0.14 THz coaxial surface wave oscillator with double-ring metamaterial slow wave structure

Guo Wei-Jie, Chen Zai-Gao, Cai Li-Bing, Wang Guang-Qiang, Cheng Guo-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This paper presents a relativistic coaxial overmoded surface wave oscillator (SWO) working at the terahertz band in the double-ring metamaterial slow wave structure (SWS). A relativistic electron beam passes through the SWS between the inner and outer rings. A coaxial overmoded SWS made up of metal metamaterial is designed to generate the high-power terahertz wave by increasing the beam-wave interaction efficiency and enlarging the transverse size of the terahertz device. It consists of double rings periodically arrayed along the z-direction, and a coaxial conductor with a radius of 2.4 mm. By its dispersive relation the proposed device is studied, from which we choose the 0.14 THz as the operating frequency of the device. Then the parameters of the geometric structure and the electron beam are optimized; the transitional section for extracting the terahertz signal is designed of the largest propagation coefficient. Particle simulation code UNIPIC is employed to verify the initial expectation and potential advantages. When the beam voltage and current are increasing, the operating frequency of the device remains almost constant, and this is the typical characteristic of the SWO. Particle simulation results show that the coaxial inner conductor has a stable operating mode of double-ring metamaterial SWS and can increase the beam-wave interaction efficiency of the SWO at the terahertz band. For a guiding magnetic field of 2.0 T, with the electron beam of 600 kV and a current of 1.0 kA, a 0.141 THz wave output power of 316.8 MW is obtained.
    [1]

    Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910

    [2]

    Booske J H 2008 Phys. Plasmas 15 055502

    [3]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol 1 54

    [4]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [5]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [6]

    Zhang H, Wang J G 2009 Proceedings of 2009 IEEE International Conference on Ultra-Wideband Vancouver, Canada, September 2009 p55

    [7]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [8]

    Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2014 Chin. Phys. B 23 058701

    [9]

    Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S, Lu X C 2013 Phys. Plasmas 20 043105

    [10]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L 2013 IEEE Trans. Electron Dev. 60 2931

    [11]

    Zhang H, Wang J G, Tong C J 2008 Proceedings of 2008 Asia Pacific Microwave Conference, Hong Kong, China, December 2008 p1

    [12]

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 120703 (in Chinese) [王宇, 陈再高, 雷奕安 2013 物理学报 62 120703]

    [13]

    Chen Z G, Wang J G, Wang G Q, Li S, Wang Y, Zhang D H, Qiao H L 2014 Acta Phys. Sin. 63 110703 (in Chinese) [陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮 2014 物理学报 63 110703]

    [14]

    Zhang H, Wang J G 2008 Proceedings of 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, November 2008 p1461

    [15]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103

    [16]

    Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108

    [17]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107

    [18]

    Pendry J, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [19]

    Schamiloglu E Proc. 4th Euro Asian Pulsed Power Conference/BEAMS Conference O5B1, Karlsruhe, Germany 2014

    [20]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

  • [1]

    Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910

    [2]

    Booske J H 2008 Phys. Plasmas 15 055502

    [3]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol 1 54

    [4]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [5]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [6]

    Zhang H, Wang J G 2009 Proceedings of 2009 IEEE International Conference on Ultra-Wideband Vancouver, Canada, September 2009 p55

    [7]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [8]

    Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2014 Chin. Phys. B 23 058701

    [9]

    Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S, Lu X C 2013 Phys. Plasmas 20 043105

    [10]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L 2013 IEEE Trans. Electron Dev. 60 2931

    [11]

    Zhang H, Wang J G, Tong C J 2008 Proceedings of 2008 Asia Pacific Microwave Conference, Hong Kong, China, December 2008 p1

    [12]

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 120703 (in Chinese) [王宇, 陈再高, 雷奕安 2013 物理学报 62 120703]

    [13]

    Chen Z G, Wang J G, Wang G Q, Li S, Wang Y, Zhang D H, Qiao H L 2014 Acta Phys. Sin. 63 110703 (in Chinese) [陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮 2014 物理学报 63 110703]

    [14]

    Zhang H, Wang J G 2008 Proceedings of 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, November 2008 p1461

    [15]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103

    [16]

    Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108

    [17]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107

    [18]

    Pendry J, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [19]

    Schamiloglu E Proc. 4th Euro Asian Pulsed Power Conference/BEAMS Conference O5B1, Karlsruhe, Germany 2014

    [20]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] Sun Ya-Li, Zhang Ye-Wen, Stephane Hole, Ma Peng, Guo Cong, Zheng Fei-Hu, An Zhen-Lian. Physical model for space charge distribution measured by pressure wave propagation method in coaxial geometry. Acta Physica Sinica, 2017, 66(12): 127701. doi: 10.7498/aps.66.127701
    [10] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [11] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [12] Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Lu Xi-Cheng, Song Zhi-Min. Study on 0.34 THz overmoded surface wave oscillator. Acta Physica Sinica, 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [13] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [14] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. Effect of Ohmic loss on coaxial surface wave oscillator in terahertz band. Acta Physica Sinica, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [15] Chen Zai-Gao, Wang Jian-Guo, Wang Guang-Qiang, Li Shuang, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. A 0.14 THz coaxial surface wave oscillator. Acta Physica Sinica, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [16] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [17] Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Tong Chang-Jiang, Lu Xi-Cheng, Guo Wei-Jie. Mode analysis of 0.14 THz overmoded surface wave oscillator. Acta Physica Sinica, 2013, 62(15): 150701. doi: 10.7498/aps.62.150701
    [18] Li Xiao-Ze, Teng Yan, Wang Jian-Guo, Song Zhi-Min, Zhang Li-Jun, Zhang Yu-Chuan, Ye Hu. Mode selection in surface wave oscillator with overmoded structure. Acta Physica Sinica, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [19] Li Shuang, Wang Jian-Guo, Tong Chang-Jiang, Wang Guang-Qiang, Lu Xi-Cheng, Wang Xue-Feng. Optimization of slow-wave structure in high power 0.34 THz radiation source. Acta Physica Sinica, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [20] Wang Yue, He Xun-Jun, Wu Yu-Ming, Wu Qun, Mei Jin-Shuo, Li Long-Wei, Yang Fu-Xing, Zhao Tuo, Li Le-Wei. Properties of terahertz surface plasmon ploaritons on carbon nanotube film with periodic grating. Acta Physica Sinica, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
Metrics
  • Abstract views:  7079
  • PDF Downloads:  242
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2014
  • Accepted Date:  27 October 2014
  • Published Online:  05 April 2015

/

返回文章
返回