Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis and simulation of X-band high-power microwave generation based on T-shaped four-period slow-wave structure

Luo Xin-Yao Xue Yu-Zhe Xu Che Du Chuang-Zhou Liu Qing-Xiang

Citation:

Analysis and simulation of X-band high-power microwave generation based on T-shaped four-period slow-wave structure

Luo Xin-Yao, Xue Yu-Zhe, Xu Che, Du Chuang-Zhou, Liu Qing-Xiang
PDF
HTML
Get Citation
  • In this study, a T-shaped, four-period resonant slow-wave structure is optimally designed, and its high-frequency performance is comprehensively analyzed in theory. By using the image theory, the T-shaped waveguide unit is transformed into an equivalent ridge waveguide configuration. The high-frequency characteristics of the equivalent ridge waveguide, such as resonant frequency and structure of the T-shaped waveguide are analyzed by using equivalent circuit theory. The analysis has confirmed that in the ridge waveguide, starting from the second-highest order mode, the frequency points of the even-order modes are very consistent with those of the T-shaped waveguide; however, the odd-order modes have no such corresponding mode in the T-shaped waveguide, for they do not fulfill the electric boundary conditions required by the image method. On this basis, a T-shaped four-period resonant slow-wave structure is constructed, and its dispersion characteristics are analyzed to determine the resonant modes and frequencies, as well as the range of mode synchronization voltages. Simulations are subsequently performed to validate the effectiveness of the relativistic extended interaction radiation source, which includes the novel T-shaped periodic resonant slow-wave structure. Advanced three-dimensional particle simulations, in conjunction with optimization techniques show that a high-power microwave output at a frequency of 9.8 GHz, is achieved, which can delivers an average power of 71.4 MW. This output is attained under the conditions of a 448 kV beam voltage, 400 A beam current, and a 0.4 T uniform axial magnetic field, with an electron efficiency reaching 39.8%. This structure, characterized by the T-shaped waveguide, is demonstrated to be capable of producing high-efficiency, high-power microwaves with fewer periods, presenting a compact and efficient solution for generating high-power microwaves in advanced scientific applications.
      Corresponding author: Xu Che, xuche@swjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2682023CX076), the Open Topics Fund of the High-Power Microwave Technology Innovation Workstation (Grant No. W031229901), and the Natural Science Foundation of Sichuan Province, China (Grant No. 24NSFSC7256).
    [1]

    Benford J, Swegle J A 2008 高功率微波 (第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社) 第 35—92 页

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Chinese Version) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35–92

    [2]

    丁耀根 2020 真空电子技术 344 1Google Scholar

    Ding Y G 2020 Vacuum Electronics 344 1Google Scholar

    [3]

    Liu Z B, Huang H, Jin X, Li S F, Wang T F, Fang X H 2019 IEEE T. Electron. Dev. 66 722Google Scholar

    [4]

    Yang F X, Dang F C, Ge X J, He J T, Ju J C, Zhang X P 2022 IEEE T. Electron. Dev. 69 7074Google Scholar

    [5]

    Ju J C, Zhang J, Shu T, Zhong H H 2017 IEEE Electr. Device L. 38 270Google Scholar

    [6]

    杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 物理学报 69 164102Google Scholar

    Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar

    [7]

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses) [黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 物理学报 67 088402]Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses)Google Scholar

    [8]

    王加松, 李洪涛, 李冬凤 2022 真空电子技术 5 24Google Scholar

    Wang J S, Li H T, Li D F 2022 Vac. Electron. 5 24Google Scholar

    [9]

    Li S F, Huang H, Duan Z Y, Basu B N, Liu Z B, He H, Wang Z L 2022 IEEE Electr. Device L. 43 131Google Scholar

    [10]

    宋玮, 刘国治, 林郁正, 邵浩 2008 强激光与粒子束 20 1322

    Song W, Liu G Z, Lin Y Z, Shao H 2008 High Power Laser Particle Beams 20 1322

    [11]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404Google Scholar

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar

    [12]

    刘振帮, 雷禄容, 黄华, 金晓, 袁欢 2015 强激光与粒子束 27 142Google Scholar

    Liu Z B, Lei L R, Huang H, Jin X, Yuan H 2015 High Power Laser Part. Beams 27 142Google Scholar

    [13]

    黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 物理学报 59 1907Google Scholar

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar

    [14]

    谢文球, 王自成, 罗积润, 刘青伦, 李现霞 2014 物理学报 63 014101Google Scholar

    Xie W Q, Wang Z C, Luo J R, Liu Q L, Li X X 2014 Acta Phys. Sin. 63 014101Google Scholar

    [15]

    邢俊毅, 冯进军 2010 真空电子技术 2010 33Google Scholar

    Xian J Y, Fang J J 2010 Vac. Electron. 2010 33Google Scholar

    [16]

    王冬, 陈代兵, 秦奋, 范植开 2009 物理学报 58 6962Google Scholar

    Wang D, Chen D B, Qin F, Fan Z K 2009 Acta Phys. Sin. 58 6962Google Scholar

    [17]

    葛行军, 钟辉煌, 钱宝良, 张军 2010 物理学报 59 2645Google Scholar

    Ge X J, Zhong H H, Qian B L, Zhang J 2010 Acta Phys. Sin. 59 2645Google Scholar

    [18]

    刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 物理学报 69 218401Google Scholar

    Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar

    [19]

    Zhang P, Shu T, Dang F C, Ge X j, Song L L, Yang F X, He J T 2022 IEEE T. Plasma Sci. 50 3557Google Scholar

    [20]

    陈树强, 胡力, 林为干 1992 电子科技大学学报 21 11

    Chen S Q, Hu L, Lin W G 1992 J. UEST. China 21 11

    [21]

    Zhang K C, Wu Z H, Liu S G 2009 J. Infrared Milli Terahz. Waves 30 309Google Scholar

    [22]

    邵玉 2017 硕士学位及论文 (合肥: 合肥工业大学)

    Shao Y 2017 M. S. Thesis (Hefei: Hefei University of Technology

    [23]

    张开春 2009 硕士学位及论文 (成都: 电子科技大学)

    Zhang K C 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • 图 1  脊波导模型图

    Figure 1.  Model diagram of ridged waveguide.

    图 2  T形波导和脊波导的电场分布 (a) T型波导基模; (b) 脊波导二阶模; (c) T形波导二阶模; (d) 脊波导四阶模

    Figure 2.  Electric field distributions of T-shaped waveguide and ridged waveguide: (a) Fundamental mode of T-shaped waveguide; (b) second order mode of ridged waveguide; (c) second order mode of T-shaped waveguide; (d) fourth order mode of T-shaped waveguide

    图 3  两种模型的高次模频率对比

    Figure 3.  Comparison of frequency between T-shaped waveguide and ridged waveguide.

    图 4  理论频率和仿真理论以及误差 (a)谐振频率随${y_{\text{g}}}$的变化; (b) 谐振频率随${x_{\text{g}}}$的变化; (c)谐振频率随${z_{\text{g}}}$的变化

    Figure 4.  Theoretical frequency and simulated frequency and error: (a) The variation of frequency and error with ${y_{\text{g}}}$; (b) the variation of frequency and error with ${x_{\text{g}}}$; (c) the variation of frequency and error with ${z_{\text{g}}}$.

    图 5  T形四周期RSWS模型图

    Figure 5.  Model of transit radiation oscillator with T-shaped slow-wave structure.

    图 6  电场强度分布图

    Figure 6.  Distribution of electric field intensity.

    图 7  各腔的色散特性曲线 (a)第1腔; (b)第2腔; (c)第3腔; (d)第4腔

    Figure 7.  Dispersion characteristics of each cavity: (a) The 1st cavity; (b) the 2nd cavity; (c) the 3rd cavity; (d) the 4th cavity

    图 8  不同电压下的输出功率和效率

    Figure 8.  Output power and efficiency with different voltage.

    图 9  电子在z方向的速度分布

    Figure 9.  Distribution of electron velocity in the z-direction.

    图 10  各腔在不同时刻的频谱图

    Figure 10.  Frequency spectrum of each cavity in different time.

    图 11  输出功率

    Figure 11.  Output power.

    图 12  输出腔频谱图

    Figure 12.  Frequency spectrum of output port.

    表 1  T形波导和脊波导基本模型对应的谐振频率

    Table 1.  Frequency of T-shaped waveguide and ridged waveguide.

    ${f_{{\text{T - shaped}}}}$/GHz${f_{{\text{ridged}}}}$/GHz
    7.0945
    7.2794(图2(a))7.2813(图2(b))
    7.6319
    8.1455(图2(c))8.1461(图2(d))
    DownLoad: CSV

    表 2  几个典型高功率微波器件的性能参数

    Table 2.  Performance parameters of several typical HPM devices.

    文献波段长度$L$/mm功率$P$效率/%
    [8]X3303 MW>41
    [10]X2501.2 GW40
    [19]X2003.65 GW>30
    本文X164.372.8 MW39.84
    DownLoad: CSV
  • [1]

    Benford J, Swegle J A 2008 高功率微波 (第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社) 第 35—92 页

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Chinese Version) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35–92

    [2]

    丁耀根 2020 真空电子技术 344 1Google Scholar

    Ding Y G 2020 Vacuum Electronics 344 1Google Scholar

    [3]

    Liu Z B, Huang H, Jin X, Li S F, Wang T F, Fang X H 2019 IEEE T. Electron. Dev. 66 722Google Scholar

    [4]

    Yang F X, Dang F C, Ge X J, He J T, Ju J C, Zhang X P 2022 IEEE T. Electron. Dev. 69 7074Google Scholar

    [5]

    Ju J C, Zhang J, Shu T, Zhong H H 2017 IEEE Electr. Device L. 38 270Google Scholar

    [6]

    杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 物理学报 69 164102Google Scholar

    Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar

    [7]

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses) [黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 物理学报 67 088402]Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses)Google Scholar

    [8]

    王加松, 李洪涛, 李冬凤 2022 真空电子技术 5 24Google Scholar

    Wang J S, Li H T, Li D F 2022 Vac. Electron. 5 24Google Scholar

    [9]

    Li S F, Huang H, Duan Z Y, Basu B N, Liu Z B, He H, Wang Z L 2022 IEEE Electr. Device L. 43 131Google Scholar

    [10]

    宋玮, 刘国治, 林郁正, 邵浩 2008 强激光与粒子束 20 1322

    Song W, Liu G Z, Lin Y Z, Shao H 2008 High Power Laser Particle Beams 20 1322

    [11]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404Google Scholar

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar

    [12]

    刘振帮, 雷禄容, 黄华, 金晓, 袁欢 2015 强激光与粒子束 27 142Google Scholar

    Liu Z B, Lei L R, Huang H, Jin X, Yuan H 2015 High Power Laser Part. Beams 27 142Google Scholar

    [13]

    黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 物理学报 59 1907Google Scholar

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar

    [14]

    谢文球, 王自成, 罗积润, 刘青伦, 李现霞 2014 物理学报 63 014101Google Scholar

    Xie W Q, Wang Z C, Luo J R, Liu Q L, Li X X 2014 Acta Phys. Sin. 63 014101Google Scholar

    [15]

    邢俊毅, 冯进军 2010 真空电子技术 2010 33Google Scholar

    Xian J Y, Fang J J 2010 Vac. Electron. 2010 33Google Scholar

    [16]

    王冬, 陈代兵, 秦奋, 范植开 2009 物理学报 58 6962Google Scholar

    Wang D, Chen D B, Qin F, Fan Z K 2009 Acta Phys. Sin. 58 6962Google Scholar

    [17]

    葛行军, 钟辉煌, 钱宝良, 张军 2010 物理学报 59 2645Google Scholar

    Ge X J, Zhong H H, Qian B L, Zhang J 2010 Acta Phys. Sin. 59 2645Google Scholar

    [18]

    刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 物理学报 69 218401Google Scholar

    Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar

    [19]

    Zhang P, Shu T, Dang F C, Ge X j, Song L L, Yang F X, He J T 2022 IEEE T. Plasma Sci. 50 3557Google Scholar

    [20]

    陈树强, 胡力, 林为干 1992 电子科技大学学报 21 11

    Chen S Q, Hu L, Lin W G 1992 J. UEST. China 21 11

    [21]

    Zhang K C, Wu Z H, Liu S G 2009 J. Infrared Milli Terahz. Waves 30 309Google Scholar

    [22]

    邵玉 2017 硕士学位及论文 (合肥: 合肥工业大学)

    Shao Y 2017 M. S. Thesis (Hefei: Hefei University of Technology

    [23]

    张开春 2009 硕士学位及论文 (成都: 电子科技大学)

    Zhang K C 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • [1] Li Zhi-Gang, Cheng Li, Yuan Zhong-Cai, Wang Jia-Chun, Shi Jia-Ming. Avalanche effect in plasma under high-power microwave irradiation. Acta Physica Sinica, 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [2] Fu Tao, Ouyang Zheng-Biao. Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal. Acta Physica Sinica, 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [3] Li Zhi-Peng, Li Jing, Sun Jing, Liu Yang, Fang Jin-Yong. High power microwave damage mechanism on high electron mobility transistor. Acta Physica Sinica, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [4] Wei Jin-Jin, Zhou Dong-Fang, Yu Dao-Jie, Hu Tao, Hou De-Ting, Zhang De-Wei, Lei Xue, Hu Jun-Jie. Seed electron production from O- detachment in high power microwave air breakdown. Acta Physica Sinica, 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [5] Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Lu Xi-Cheng, Song Zhi-Min. Study on 0.34 THz overmoded surface wave oscillator. Acta Physica Sinica, 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [6] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [7] Wang Dong, Xu Sha, Cao Yan-Wei, Qin Fen. Design of a metallic photonic crystal high power microwave mode converter. Acta Physica Sinica, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [8] Chen Shu-Yuan, Ruan Cun-Jun, Wang Yong. Research on equivalent circuit of multi-gap output cavity for sheet beam extended-interaction klystron. Acta Physica Sinica, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [9] Li Shuang, Wang Jian-Guo, Tong Chang-Jiang, Wang Guang-Qiang, Lu Xi-Cheng, Wang Xue-Feng. Optimization of slow-wave structure in high power 0.34 THz radiation source. Acta Physica Sinica, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [10] Liu Yang, Xu Jin, Xu Xiong, Shen Fei, Wei Yan-Yu, Huang Min-Zhi, Tang Tao, Wang Wen-Xiang, Gong Yu-Bin. Research on the V-shape folded rectangular groove slow-wave structure. Acta Physica Sinica, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [11] Li Wei, Liu Yong-Gui, Yang Jian-Hua. Investigation on the power combination of the relativistic magnetrons with axial extraction. Acta Physica Sinica, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [12] You Hai-Long, Lan Jian-Chun, Fan Ju-Ping, Jia Xin-Zhang, Zha Wei. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave. Acta Physica Sinica, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [13] Yi Hong-Xia, Xiao Liu, Liu Pu-Kun, Hao Bao-Liang, Li Fei, Li Guo-Chao. Optimization of slow wave structures of space traveling wave tube based on collectability of spent beam. Acta Physica Sinica, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [14] Huang Hua, Luo Xiong, Lei Lu-Rong, Luo Guang-Yao, Zhang Bei-Zhen, Jin Xiao, Tan Jie. Investigation on a long pulse relativistic extended interaction cavity oscillator. Acta Physica Sinica, 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [15] Li Guo-Lin, Shu Ting, Yuan Cheng-Wei, Zhang Jun, Jin Zhen-Xing, Yang Jian-Hua, Zhong Hui-Huang, Yang Jie, Wu Da-Peng. Preliminary investigation on the design and experiment of a spatial filter for dual band high power microwave. Acta Physica Sinica, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [16] Wang Dong, Chen Dai-Bing, Qin Fen, Fan Zhi-Kai. The two-dimensional periodic structure in a bifrequency magnetically insulated transmission line oscillator. Acta Physica Sinica, 2009, 58(10): 6962-6972. doi: 10.7498/aps.58.6962
    [17] Lu Zhi-Gang, Wei Yan-Yu, Gong Yu-Bin, Wu Zhou-Miao, Wang Wen-Xiang. Study of high frequency characteristics of the rectangular waveguide grating slow-wave structure with arbitrary grooves. Acta Physica Sinica, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [18] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] Li Zheng-Hong, Meng Fan-Bao, Chang An-Bi, Huang Hua, Ma Qiao-Sheng. Investigation of bitron as a high power microwave oscillator. Acta Physica Sinica, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [20] Zhang Jun, Zhong Hui-Huang. Investigation on longitudinal mode selection in O-type HPM devices. Acta Physica Sinica, 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
Metrics
  • Abstract views:  1547
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2023
  • Accepted Date:  04 February 2024
  • Available Online:  13 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回