Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution of the ultrasonic resonance modes in a three-layer structure with change of material and interface adhesion properties

Liu Jing Xu Wei-Jiang Hu Wen-Xiang

Citation:

Evolution of the ultrasonic resonance modes in a three-layer structure with change of material and interface adhesion properties

Liu Jing, Xu Wei-Jiang, Hu Wen-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The quantitative non-destructive evaluation (NDE) of interface adhesion has long been a challenge for the safe use of bonding structures. It is difficult to predict the adhesion resistance force between adhesive and adhered material without performing destructive testing. Ultrasonic approach seems to be the only potential way for its NDE based on the reason of mechanical nature of the problem. Different ultrasonic techniques, such as bulk wave echography, reflection resonance, and Lamb guided waves, have been used to evaluate the interface adhesion strength. But no direct relation between the interfacial bonding strength and the ultrasonic measurement has been established. The most used compression wave echography and resonance at normal incidence are less sensitive to the interface condition, except for a disbond. It is essential that the interface should be excited with a shear stress component to increase the measurement sensibility. But it is not easy to excite the interface by using shear waves in experiment, while the use of guided waves will encounter the problems of high attenuation and mode selection as all modes are not sensitive to a certain interface in a bonded structure. A previous study has shown that the V (z) inversion technique can be used to perform a multimode measurement on a layered structure, where both compression and shear stress resonance occur. This method has the advantage in using a simple experimental setup working at the normal incidence with a focus transducer of large angular aperture. The inversed angular-frequency reflectance function R(; f) gives the resonance modes which are equivalent to the Lamb type guided modes, while it is a local determination of the wave mode, thus the difficulty in guided wave measurement above mentioned can be avoided. The first part of the paper contains the development of the theoretical model for wave propagation in a multilayered structure where three-layer sandwich bonded structures can be considered as a particular case. A weak interfacial adhesion is described by two interface compression and shear stiffness parameters, namely km and kt. By integrating the transfer matrix formalism under the non-ideal boundary conditions, the plane wave angular (incident angle) and frequency reflection coefficient function R(; f) for a liquid immersed asymmetric metal-adhesive-metal three-layer and its dispersion curves of guided mode waves with or without charge are calculated. It is confirmed that the evolutions of the reflection zeros (mode resonances) correspond to the dispersion curves of the guided waves of the same structure without charge. Furthermore, the resonance modes observed in R(; f) can be considered as a combination of the respective Lamb modes of the top and bottom single metal layers coupled through the modes conditioned by the middle adhesive layer and the its interface conditions. The second part of the paper shows the behaviors of the resonance modes by changing the parameters related to the bonding strength. The acoustical impedance, the mass density and the thickness of the adhesive layer, which are related to the cohesive property, and the shear interfacial stiffness coefficient kt which conditions the adhesive property, are changed respectively to observe the resonance mode evolutions. The mode evolutions due to each parameter are analyzed and differentiated. It can be concluded that the change in the adhesion strength of the bonding structure does not affect significantly the modes belonging to those inherent to the two adhered aluminum layers, while the coupling modes will be shifted in frequency and exchange with or replace the said inherent modes. It is expected that the obtained results in this study will be of significance for quantitatively characterizing the interfacial properties of an adhesively bonded layered structure by using the V (z) inversion technique.
      Corresponding author: Hu Wen-Xiang, wxhu@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374230) and the Key Program of the National Natural Science Foundation of China (Grant No. 10834009).
    [1]

    Maeva E, Severina I, Bondarenko S, Chapman G, O'Neill B, Severin F, Maev R G 2004 Can. J. Phys. 82 981

    [2]

    Li M X 2009 10000 Selected Problems in Sciences: Physics (Beijing: Science Press) p356 (in Chinese) [李明轩 2009 10000个科学难题 物理学卷 (北京: 科学出版社) 第356页]

    [3]

    Awaja F, Gilbert M, Kelly G, Fox B, Pigram P J 2009 Prog. Polym. Sci. 34 948

    [4]

    Baik J M, Thompson R B 1984 J. Nondestr. Eval. 4 177

    [5]

    Titov S A, Maev R G, Bogachenkov A N 2008 Ultrasonics 48 537

    [6]

    Zhou H M, Liu G W 2012 Measurement 45 1414

    [7]

    Pilarski A, Rose J L 1988 J. Appl. Phys. 63 300

    [8]

    Pilarski A, Rose J L 1988 NDT International 21 241

    [9]

    Vine K, Cawley P, Kinloch A J 2002 NDT & E Int. 35 241

    [10]

    Drinkwater B, Cawley P 1997 Ultrasonics 35 479

    [11]

    Baltazar A, Wang L, Xie B, Rokhlin S I 2003 J. Acoust. Soc. Am. 114 1424

    [12]

    Leiderman R, Braga A M B, Barbone P E 2005 J. Acoust. Soc. Am. 118 2154

    [13]

    Belloncle V V, Rousseau M, Terrien N 2007 NDT & E Int. 40 419

    [14]

    Akker S, Arman J 1997 Ultrasonics 35 287

    [15]

    Pilarski A, Rose J L 1992 J. Nondestr. Eval. 11 237

    [16]

    Singher L, Segal Y, Segal E, Shamir J 1994 J. Acoust. Soc. Am. 96 2497

    [17]

    Xu P C, Datta S K 1990 J. Appl. Phys. 67 6779

    [18]

    Karpur P, Kundu T, Ditri J J 1999 Review of Progress in Quantitative Nondestructive Evaluation (Vol. 18A-18B) (NewYork: Springer US) 18 pp1533-1542

    [19]

    Castaings M 2014 Ultrasonics 54 1760

    [20]

    Ren B, Lissenden C J 2013 Int. J. Adhes. Adhes. 45 59

    [21]

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301]

    [22]

    Zhang R, Wan M X, Cao W W 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐, 万明习, Cao Wen-Wu 2000 物理学报 49 1297]

    [23]

    Vinh P C, Giang P T H 2011 Wave Motion 48 647

    [24]

    Bar-Cohen Y, Mal A K, Lih S S 1993 Materials Evaluation 51 1285

    [25]

    Rokhlin S I, Wang W 1989 J. Acoust. Soc. Am. 86 1876

    [26]

    Liang K K, Kino G S, Khuri-Yakub B T 1985 IEEE Trans. Sonics. Ultrason. 32 213

    [27]

    X W J, Ourak M 1997 NDT & E Int. 30 75

    [28]

    X W J, Ourak M, Lematre M, Bourse G 2000 AIP Conference Proceedings Montreal, Canada, July 25-30, 1999 p1183

    [29]

    Bourse G, X W J, Mouftiez A, Vandevoorde L, Ourak M 2012 NDT {& E Int. 45 22

    [30]

    Liu J, Xu W J, Hu W X, Ourak M, Dubois A 2015 Chin. Phys. Lett. 32 124303

    [31]

    Thomson W T 1950 J. Appl. Phys. 21 89

    [32]

    Lowe M J S 1995 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 525

    [33]

    Rokhlin S I, Wang Y J 1991 J. Acoust. Soc. Am. 89 503

    [34]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [35]

    Chimenti D E, Rokhlin S I 1990 J. Acoust. Soc. Am. 88 1603

    [36]

    Crom B L, Castaings M 2010 J. Acoust. Soc. Am. 127 2220

  • [1]

    Maeva E, Severina I, Bondarenko S, Chapman G, O'Neill B, Severin F, Maev R G 2004 Can. J. Phys. 82 981

    [2]

    Li M X 2009 10000 Selected Problems in Sciences: Physics (Beijing: Science Press) p356 (in Chinese) [李明轩 2009 10000个科学难题 物理学卷 (北京: 科学出版社) 第356页]

    [3]

    Awaja F, Gilbert M, Kelly G, Fox B, Pigram P J 2009 Prog. Polym. Sci. 34 948

    [4]

    Baik J M, Thompson R B 1984 J. Nondestr. Eval. 4 177

    [5]

    Titov S A, Maev R G, Bogachenkov A N 2008 Ultrasonics 48 537

    [6]

    Zhou H M, Liu G W 2012 Measurement 45 1414

    [7]

    Pilarski A, Rose J L 1988 J. Appl. Phys. 63 300

    [8]

    Pilarski A, Rose J L 1988 NDT International 21 241

    [9]

    Vine K, Cawley P, Kinloch A J 2002 NDT & E Int. 35 241

    [10]

    Drinkwater B, Cawley P 1997 Ultrasonics 35 479

    [11]

    Baltazar A, Wang L, Xie B, Rokhlin S I 2003 J. Acoust. Soc. Am. 114 1424

    [12]

    Leiderman R, Braga A M B, Barbone P E 2005 J. Acoust. Soc. Am. 118 2154

    [13]

    Belloncle V V, Rousseau M, Terrien N 2007 NDT & E Int. 40 419

    [14]

    Akker S, Arman J 1997 Ultrasonics 35 287

    [15]

    Pilarski A, Rose J L 1992 J. Nondestr. Eval. 11 237

    [16]

    Singher L, Segal Y, Segal E, Shamir J 1994 J. Acoust. Soc. Am. 96 2497

    [17]

    Xu P C, Datta S K 1990 J. Appl. Phys. 67 6779

    [18]

    Karpur P, Kundu T, Ditri J J 1999 Review of Progress in Quantitative Nondestructive Evaluation (Vol. 18A-18B) (NewYork: Springer US) 18 pp1533-1542

    [19]

    Castaings M 2014 Ultrasonics 54 1760

    [20]

    Ren B, Lissenden C J 2013 Int. J. Adhes. Adhes. 45 59

    [21]

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301]

    [22]

    Zhang R, Wan M X, Cao W W 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐, 万明习, Cao Wen-Wu 2000 物理学报 49 1297]

    [23]

    Vinh P C, Giang P T H 2011 Wave Motion 48 647

    [24]

    Bar-Cohen Y, Mal A K, Lih S S 1993 Materials Evaluation 51 1285

    [25]

    Rokhlin S I, Wang W 1989 J. Acoust. Soc. Am. 86 1876

    [26]

    Liang K K, Kino G S, Khuri-Yakub B T 1985 IEEE Trans. Sonics. Ultrason. 32 213

    [27]

    X W J, Ourak M 1997 NDT & E Int. 30 75

    [28]

    X W J, Ourak M, Lematre M, Bourse G 2000 AIP Conference Proceedings Montreal, Canada, July 25-30, 1999 p1183

    [29]

    Bourse G, X W J, Mouftiez A, Vandevoorde L, Ourak M 2012 NDT {& E Int. 45 22

    [30]

    Liu J, Xu W J, Hu W X, Ourak M, Dubois A 2015 Chin. Phys. Lett. 32 124303

    [31]

    Thomson W T 1950 J. Appl. Phys. 21 89

    [32]

    Lowe M J S 1995 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 525

    [33]

    Rokhlin S I, Wang Y J 1991 J. Acoust. Soc. Am. 89 503

    [34]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [35]

    Chimenti D E, Rokhlin S I 1990 J. Acoust. Soc. Am. 88 1603

    [36]

    Crom B L, Castaings M 2010 J. Acoust. Soc. Am. 127 2220

  • [1] Hao Wang, Duan Rui, Yang Kun-De. Bayesian geoacoustic parameter inversion based on dispersion characteristics of normal mode water wave and ground wave. Acta Physica Sinica, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] Zhang Hui, Zhu Wen-Fa, Fan Guo-Peng, Zhang Hai-Yan. Thinned array ultrasonic imaging of debonding defects in discontinuous impedance bonded structures. Acta Physica Sinica, 2023, 72(2): 024302. doi: 10.7498/aps.72.20221771
    [3] Sun Guan-Wen, Cui Han-Yin, Li Chao, Lin Wei-Jun. Methods of modelling dispersive sound speed profiles of Martian atmosphere and their effects on sound propagation paths. Acta Physica Sinica, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [4] Wang Ru-Jia, Wu Shi-Ping, Chen Wei. Propagation of thermoviscoelastic wave in inhomogeneous alloy melt with varying temperature. Acta Physica Sinica, 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [5] Yan Zhi-Meng, Wang Jing, Guo Jian-Hong. Low-bias oscillations of shot noise as signatures of Majorana zero modes. Acta Physica Sinica, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [6] Ni Long, Chen Xiao. Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential. Acta Physica Sinica, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [7] Yuan Bo, Shui Guo-Shuang, Wang Yue-Sheng. Nonlinear ultrasonic evaluation of damage to bonding interface under cyclic temperature fatigue. Acta Physica Sinica, 2018, 67(7): 074302. doi: 10.7498/aps.67.20172265
    [8] Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying. Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells. Acta Physica Sinica, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [9] Zhou Cong, Wang Qing-Liang. One-dimension nonlinear and dispersive seismic wave modeling in solid media. Acta Physica Sinica, 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [10] Liu Qi-Neng, Liu Qin. Resonance theory of SH wave total reflection tunnel effect in 1D solid-solid infinite cycle phononic crystal. Acta Physica Sinica, 2013, 62(4): 044301. doi: 10.7498/aps.62.044301
    [11] Li Kun, Fang Shi-Liang, An Liang. Studies on mode feature extraction and source range and depth estimation with a single hydrophone based on the dispersion characteristic. Acta Physica Sinica, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [12] Fang Jian-Shi, Zhang Ding-Guo. Analyses of rigid-flexible coupling dynamic properties of a rotating internal cantilever beam. Acta Physica Sinica, 2013, 62(4): 044501. doi: 10.7498/aps.62.044501
    [13] Huang Chao-Qiang, Chen Bo, Li Xin-Xi, V. G. Syromyatnikov, N. K. Pleshanov. Investigation of interfacial structure and property of CoFe/TiZr multilayers by polarized neutron reflectometry. Acta Physica Sinica, 2008, 57(1): 364-370. doi: 10.7498/aps.57.364
    [14] Li Fu-Cai, Meng Guang. Dispersion analysis of Lamb waves with narrow frequency bands. Acta Physica Sinica, 2008, 57(7): 4265-4272. doi: 10.7498/aps.57.4265
    [15] Xiao Xia, You Xue-Yi, Yao Su-Ying. Dispersion feature in arbitrary direction of surface acoustic wave applied to property characterization of ultra-large-scale integrated circuit interconnect films. Acta Physica Sinica, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [16] Cai Li, Han Xiao-Yun. Study of the band-structure and the uncoupled modes in two-dimensional phononic crystals with the multiple-scattering theory. Acta Physica Sinica, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [17] Zhu Hong-Mao, Zheng Wei-Hua, Huang Zhong-Wen, Zhu Cheng. Research on spatial motion of ultrasonic speckles back-scattered from an interface in motion. Acta Physica Sinica, 2004, 53(8): 2614-2620. doi: 10.7498/aps.53.2614
    [18] PENG JING-CUI. OPTICAL ABSORPTION OF THE PYRAZINE-BRIDGED MIXED-VALENCE DIMER. Acta Physica Sinica, 1991, 40(6): 862-869. doi: 10.7498/aps.40.862
    [19] PENG JING-CUI. DOPING AND ELECTRICAL CONDUCTIVITY IN HALOGEN-BRIDGED MIXED-VALENCE PLATINUM COMPLEX. Acta Physica Sinica, 1991, 40(1): 109-116. doi: 10.7498/aps.40.109
    [20] ZHAO YU-ZHI, LENG ZHUNG-ANG. THE DISPERSION AND ATTENUATION OF THE ELECTROMAGNETIC OSCILLATIONS IN ANTIFERROMAGNETIC MEDIUM. Acta Physica Sinica, 1962, 18(3): 167-174. doi: 10.7498/aps.18.167
Metrics
  • Abstract views:  6030
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2015
  • Accepted Date:  07 December 2015
  • Published Online:  05 April 2016

/

返回文章
返回