Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Butt-joint design in a uni-traveling carrier photodiode array monolithic with an arrayed waveguide grating by the selective area growth technique

Ye Han Han Qin Lü Qian-Qian Pan Pan An Jun-Ming Wang Yu-Bing Liu Rong-Rui Hou Li-Li

Citation:

Butt-joint design in a uni-traveling carrier photodiode array monolithic with an arrayed waveguide grating by the selective area growth technique

Ye Han, Han Qin, Lü Qian-Qian, Pan Pan, An Jun-Ming, Wang Yu-Bing, Liu Rong-Rui, Hou Li-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Monolithic integration of an InP-based O-band 4-channel arrayed waveguide grating (AWG) to a uni-traveling carrier photodiode (UTC-PD) array is realized by the selective area growth (SAG) technique. The passive-active buttjoint design is introduced and experimentally proved to ensure both good compatibility between the PD fabrication process and the SAG technique, and high photodiode quantum efficiency under the complex butt-joint geometry. An extended coupling layer is adopted between the AWG output waveguides and the PD mesa. The extended coupling layer length, the regrowth boundary edge position and the AWG etching edge position relative to the heterogeneous butt-joint boundary, and the refractive indices of the PD collector and coupling layer are optically simulated and optimized by a finite-difference time-domain method. It is found that the extended coupling layer, compared with the un-extended situation, ensures a good matched optical field from AWG to PD and could reduce nearly 30% quantum efficiency loss when connecting seamlessly to the regrown InP AWG top cladding layer. A stable high efficiency around 80% is maintained within an extended layer length from 7.5 m to 15.0 m. The regrowth boundary edge into the coupling region will cause a drastic efficiency oscillation up to 20% period with the increase of distance. The efficiency drop is also attributed to the light scattering at the regrowth boundary edge, caused by the optical field mismatch, while the oscillation comes from the alternative light power concentration between the coupling layer and the core layer, for the light scattering is only obvious when the light power is well concentrated in the coupling layer. The AWG etching edge position deviation from the butt-joint boundary, however, exerts little influence on the PD quantum efficiency, which is believed not to bring obvious coupling loss during device fabrication. The higher UTC-PD collector refractive index is proved to be crucial for further better optical coupling from the coupling layer to the PD, with quantum efficiency rapidly increasing from around 0.1 to 0.8 when the index is increased from 3.20 to 3.42. By comparison, the efficiency is little affected by the coupling layer refractive index from 3.34 to 3.42.All things considered, we select a 10 m extended coupling layer, the refractive indices of both PD collector and the coupling layer to be 3.42, and align both the regrowth boundary edge and the AWG etching edge to the heterogeneous butt-joint boundary, and a PD quantum efficiency of 80% is expected. Owing to the extended coupling layer at the butt-joint, the SAG technique facilitates the PD fabrication process. The overgrown AWG top cladding layer ridge stretches out 4.67 m toward the PD, but not over the mesa yet, hence has little influence on the PD fabrication accuracy. The monolithic chip presents a uniform photodiode quantum efficiency of 76%, which accords well with theoretical value and confirms the butt-joint design. Central wavelengths for the four channels are 1347.0 nm, 1325.0 nm, 1308.0 nm, and 1286.5 nm, respectively. The low crosstalk level (below -22 dB) also indicates a good de-multiplexer performance.
      Corresponding author: Han Qin, hanqin@semi.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No.2015AA016902),the National Key Research and Development Plan of China (Grant No.2016YFB0402404),and the National Natural Science Foundation of China (Grant Nos.61635010,61674136,61435002).
    [1]

    Kish F A, Welch D, Nagarajan R, Pleumeekers J L, Lal V, Ziari M, Nilsson A, Kato M, Murthy S, Evans P, Corzine S W, Mitchell M, Samra P, Missey M, DeMars S, Schneider R P, Reffle M S, Butrie T, Rahn J T, Leeuwen M V, Stewart J W, Lambert D J H, Muthiah R C, Tsai H S, Bostak J S, Dentai A, Wu K T, Sun H, Pavinski D J, Zhang J M, Tang J, McNicol J, Kuntz M, Dominic V, Taylor B D, Salvatore R A, Fisher M, Spannagel A, Strzelecka E, Studenkov P, Raburn M, Williams W, Christini D, Thomson K J, Agashe S S, Malendevich R, Goldfarb G, Melle S, Joyner C, Kaufman M, Grubb S G 2011 IEEE J. Sel. Top. Quantum Electron. 17 1470

    [2]

    Nagarajan R, Joyner C H, Schneider R P J, Bostak J S, Butrie T, Dentai A G, Dominic V G, Evans P W, Kato M, Kauffman M, Lambert D J H, Mathis S K, Mathur A, Miles R H, Mitchell M L, Missey M J, Murthy S, Nilsson A C, Peters F H, Pennypacker S C, Pleumeekers J L, Salvatore R A, Schlenker R K, Taylor R B, Tsai H S, Leeuwen M F V, Webjorn J, Ziari M, Perkins D, Singh J, Grubb S G, Reffle M S, Mehuys D G, Kish F A, Welch D F 2005 IEEE J. Sel. Topics Quantum Electron. 11 50

    [3]

    Tolstikhin V 2013 Proceedings of the 10th Conference on Lasers and Electro-Optics Pacific Rim Kyoto, Japan, June 30-July 4,2013 TuN1-3

    [4]

    Wang Y, Pan J Q, Zhao L J, Zhu H L, Wang W 2010 Chin. Phys. B 19 124215

    [5]

    Bernasconi P, Bhardwaj A, Doerr C R, Zhang L, Sauer N, Buhl L, Yang W, Neilson D T 2007 Proceedings of the 15th Integrated Photonics and Nanophotonics Research and Applications Salt Lake City, Utah, United States, July 8, 2007 IMA4

    [6]

    Yoshikuni Y 2002 IEEE J. Sel. Topics Quantum Electron. 8 1102

    [7]

    Barbarin Y, Leijtens X J M, Bente E A J M, Louzao C M, Kooiman J R, Smit M K 2004 IEEE Photon. Technol. Lett. 16 2478

    [8]

    Pan P, An J M, Wang Y, Zhang J S, Wang L L, Qi Y, Han Q, Hu X W 2015 Opt. Laser Technol. 75 177

    [9]

    Ishibashi T, Kodama S, Shimizu N, Furuta T 1997 Jpn. J. Appl. Phys. 36 6263

    [10]

    Li Z, Pan H P, Chen H, Beling A, Campbell J C 2010 IEEE J. Quantum Electron. 46 626

    [11]

    Zhang R, Hraimel B, Li X, Zhang P, Zhang X P 2013 Opt. Express 21 6943

    [12]

    Li J, Xiong B, Luo Y, Sun C Z, Wang J, Hao Z B, Han Y J, Wang L, Li H T 2016 Opt. Express 24 8420

    [13]

    Kulkova I V, Kadkhodazadeh S, Kuznetsova N, Huck A, Semenova E S, Yvind K 2014 J. Cryst. Growth 402 243

    [14]

    Zhang X L, Lu D, Zhang R K, Wang W, Ji C 2014 Chin. Phys. Lett. 31 064202

    [15]

    Smit M, Leijtens X, Ambrosius H, Bente E, Tol J V D, Smalbrugge B, Vries T D, Geluk E J, Bolk J, Veldhoven R V, Augustin L, Thijs P, D'Agostino D, Rabbani H, Lawniczuk K, Stopinski S, Tahvili S, Corradi A, Kleijn E, Dzibrou D, Felicetti M, Bitincka E, Moskalenko V, Zhao J, Santos R, Gilardi G, Yao W M, Williams K, Stabile P, Kuindersma P, Pello J, Bhat S, Jiao Y Q, Heiss D, Roelkens G, Wale M, Firth P, Soares F, Grote N, Schell M, Debregeas H, Achouche M, Gentner J L, Bakker A, Korthorst T, Gallagher D, Dabbs A, Melloni A, Morichetti F, Melati D, Wonfor A, Penty R, Broeke R, Musk B, Robbins D 2014 Semicond. Sci. Technol. 29 083001

    [16]

    Li M, Chen X F, Su Y K, Wang X J, Chen M H, Dai D X, Liu J G, Zhu N H 2016 IEEE J. Quantum Electron. 52 0601017

    [17]

    Guo J C, Zuo Y H, Zhang Y, Zhang L Z, Cheng B W, Wang Q M 2010 Acta Phys. Sin. 59 4524 (in Chinese) [郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明 2010 物理学报 59 4524]

    [18]

    Zang G, Huang Y Q, Luo Y, Duan X F, Ren X M 2014 Acta Phys. Sin. 63 208502 (in Chinese) [臧鸽, 黄永清, 骆扬, 段晓峰, 任晓敏 2014 物理学报 63 208502]

    [19]

    Beling A, Campbell J C 2009 J. Lightw. Technol. 27 343

    [20]

    Shi J W, Wu Y S, Wu C Y, Chiu P H 2005 IEEE Photon. Technol. Lett. 17 1929

    [21]

    Pearsall T P 1982 GaInAsP Alloy Semiconductors (New York: VaJ-BalJou Press) pp362-363

    [22]

    Huang D X 2013 Semiconductor Optoelectronics (2nd Ed.) (Beijing: Publishing House of Electronics Industry) p251 (in Chinese) [黄德修 2013 半导体光电子学 (第2版) (北京:电子工业出版社) 第251页]

  • [1]

    Kish F A, Welch D, Nagarajan R, Pleumeekers J L, Lal V, Ziari M, Nilsson A, Kato M, Murthy S, Evans P, Corzine S W, Mitchell M, Samra P, Missey M, DeMars S, Schneider R P, Reffle M S, Butrie T, Rahn J T, Leeuwen M V, Stewart J W, Lambert D J H, Muthiah R C, Tsai H S, Bostak J S, Dentai A, Wu K T, Sun H, Pavinski D J, Zhang J M, Tang J, McNicol J, Kuntz M, Dominic V, Taylor B D, Salvatore R A, Fisher M, Spannagel A, Strzelecka E, Studenkov P, Raburn M, Williams W, Christini D, Thomson K J, Agashe S S, Malendevich R, Goldfarb G, Melle S, Joyner C, Kaufman M, Grubb S G 2011 IEEE J. Sel. Top. Quantum Electron. 17 1470

    [2]

    Nagarajan R, Joyner C H, Schneider R P J, Bostak J S, Butrie T, Dentai A G, Dominic V G, Evans P W, Kato M, Kauffman M, Lambert D J H, Mathis S K, Mathur A, Miles R H, Mitchell M L, Missey M J, Murthy S, Nilsson A C, Peters F H, Pennypacker S C, Pleumeekers J L, Salvatore R A, Schlenker R K, Taylor R B, Tsai H S, Leeuwen M F V, Webjorn J, Ziari M, Perkins D, Singh J, Grubb S G, Reffle M S, Mehuys D G, Kish F A, Welch D F 2005 IEEE J. Sel. Topics Quantum Electron. 11 50

    [3]

    Tolstikhin V 2013 Proceedings of the 10th Conference on Lasers and Electro-Optics Pacific Rim Kyoto, Japan, June 30-July 4,2013 TuN1-3

    [4]

    Wang Y, Pan J Q, Zhao L J, Zhu H L, Wang W 2010 Chin. Phys. B 19 124215

    [5]

    Bernasconi P, Bhardwaj A, Doerr C R, Zhang L, Sauer N, Buhl L, Yang W, Neilson D T 2007 Proceedings of the 15th Integrated Photonics and Nanophotonics Research and Applications Salt Lake City, Utah, United States, July 8, 2007 IMA4

    [6]

    Yoshikuni Y 2002 IEEE J. Sel. Topics Quantum Electron. 8 1102

    [7]

    Barbarin Y, Leijtens X J M, Bente E A J M, Louzao C M, Kooiman J R, Smit M K 2004 IEEE Photon. Technol. Lett. 16 2478

    [8]

    Pan P, An J M, Wang Y, Zhang J S, Wang L L, Qi Y, Han Q, Hu X W 2015 Opt. Laser Technol. 75 177

    [9]

    Ishibashi T, Kodama S, Shimizu N, Furuta T 1997 Jpn. J. Appl. Phys. 36 6263

    [10]

    Li Z, Pan H P, Chen H, Beling A, Campbell J C 2010 IEEE J. Quantum Electron. 46 626

    [11]

    Zhang R, Hraimel B, Li X, Zhang P, Zhang X P 2013 Opt. Express 21 6943

    [12]

    Li J, Xiong B, Luo Y, Sun C Z, Wang J, Hao Z B, Han Y J, Wang L, Li H T 2016 Opt. Express 24 8420

    [13]

    Kulkova I V, Kadkhodazadeh S, Kuznetsova N, Huck A, Semenova E S, Yvind K 2014 J. Cryst. Growth 402 243

    [14]

    Zhang X L, Lu D, Zhang R K, Wang W, Ji C 2014 Chin. Phys. Lett. 31 064202

    [15]

    Smit M, Leijtens X, Ambrosius H, Bente E, Tol J V D, Smalbrugge B, Vries T D, Geluk E J, Bolk J, Veldhoven R V, Augustin L, Thijs P, D'Agostino D, Rabbani H, Lawniczuk K, Stopinski S, Tahvili S, Corradi A, Kleijn E, Dzibrou D, Felicetti M, Bitincka E, Moskalenko V, Zhao J, Santos R, Gilardi G, Yao W M, Williams K, Stabile P, Kuindersma P, Pello J, Bhat S, Jiao Y Q, Heiss D, Roelkens G, Wale M, Firth P, Soares F, Grote N, Schell M, Debregeas H, Achouche M, Gentner J L, Bakker A, Korthorst T, Gallagher D, Dabbs A, Melloni A, Morichetti F, Melati D, Wonfor A, Penty R, Broeke R, Musk B, Robbins D 2014 Semicond. Sci. Technol. 29 083001

    [16]

    Li M, Chen X F, Su Y K, Wang X J, Chen M H, Dai D X, Liu J G, Zhu N H 2016 IEEE J. Quantum Electron. 52 0601017

    [17]

    Guo J C, Zuo Y H, Zhang Y, Zhang L Z, Cheng B W, Wang Q M 2010 Acta Phys. Sin. 59 4524 (in Chinese) [郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明 2010 物理学报 59 4524]

    [18]

    Zang G, Huang Y Q, Luo Y, Duan X F, Ren X M 2014 Acta Phys. Sin. 63 208502 (in Chinese) [臧鸽, 黄永清, 骆扬, 段晓峰, 任晓敏 2014 物理学报 63 208502]

    [19]

    Beling A, Campbell J C 2009 J. Lightw. Technol. 27 343

    [20]

    Shi J W, Wu Y S, Wu C Y, Chiu P H 2005 IEEE Photon. Technol. Lett. 17 1929

    [21]

    Pearsall T P 1982 GaInAsP Alloy Semiconductors (New York: VaJ-BalJou Press) pp362-363

    [22]

    Huang D X 2013 Semiconductor Optoelectronics (2nd Ed.) (Beijing: Publishing House of Electronics Industry) p251 (in Chinese) [黄德修 2013 半导体光电子学 (第2版) (北京:电子工业出版社) 第251页]

  • [1] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [3] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [4] Yang Shuai, Zhang Hao, He Ke. Selective-area-epitaxied PbTe-superconductor hybrid nanowires: A new candidate system to realize topological quantum computing. Acta Physica Sinica, 2023, 72(23): 238101. doi: 10.7498/aps.72.20231603
    [5] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [6] Zhang Xiao, Lü Jia-Yu, Guan Yan-Qiu, Li Hui, Wang Xi-Ming, Zhang La-Bao, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Wu Pei-Heng. Design and fabrication of single photon detector with ultra-large area superconducting nanowire array. Acta Physica Sinica, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [7] Li Ke, Dong Ming-Li, Yuan Pei, Lu Li-Dan, Sun Guang-Kai, Zhu Lian-Qing. Review of fiber Bragg grating interrogation techniques based on array waveguide gratings. Acta Physica Sinica, 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [8] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [9] Yang Sheng-Hui, Dong Ming-Yi, Qu Chao-Yue, Tian Xing-Cheng, Dong Jing, Wu Ye, Ma Xiao-Yan, Zhang Hong-Yu, Jiang Xiao-Shan, Ouyang Qun, Li Lan-Kun, Zheng Guo-Heng. Test study of detector modules based on monolithic active pixel sensor. Acta Physica Sinica, 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [10] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [11] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [12] Chen Xi, Zhao Ling-Juan, Chen Jian-Jun, Wang Hui-Ping, Wu Zheng-Mao, Lu Dan, Xia Guang-Qiong. Experimental investigations on the dynamical characteristics of pulse packages in a monolithically integrated amplified feedback laser. Acta Physica Sinica, 2016, 65(21): 214209. doi: 10.7498/aps.65.214209
    [13] Wang Jian-Yuan, Wang Chen, Li Cheng, Chen Song-Yan. Selective area growth of Ge film on Si. Acta Physica Sinica, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [14] Zhang Zhi-Guo. Realization and experiment of vertical multijunction integrated photovoltaic Si X-ray detector. Acta Physica Sinica, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [15] Huo Wen-Juan, Xie Hong-Yun, Liang Song, Zhang Wan-Rong, Jiang Zhi-Yun, Chen Xiang, Lu Dong. Uni-traveling-carrier double heterojunction phototransistor photodetector. Acta Physica Sinica, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [16] Zhang Ling-Zi, Zuo Yu-Hua, Cao Quan, Xue Chun-Lai, Cheng Bu-Wen, Zhang Wan-Chang, Cao Xue-Lei, Wang Qi-Ming. High-speed and high-power uni-traveling-carrier photodetector. Acta Physica Sinica, 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [17] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [19] Xiong Da-Yuan, Zeng Yong, Li Ning, Lu Wei. The grating optical coupling of the very long wavelength quantum well infrared photodetectors. Acta Physica Sinica, 2006, 55(7): 3642-3648. doi: 10.7498/aps.55.3642
    [20] Zhao Qian, Pan Jiao-Qing, Zhang Jing, Zhou Guang-Tao, Wu Jian, Zhou Fan, Wang Bao-Jun, Wang Lu-Feng, Wang Wei. 10 GHz optical short pulse generation using tandem electroabsorption modulators monolithically integrated with distributed feedback laser by ultra-low-pressure selective area growth. Acta Physica Sinica, 2006, 55(1): 261-266. doi: 10.7498/aps.55.261
Metrics
  • Abstract views:  6252
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2017
  • Accepted Date:  07 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回