Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of interactions between amorphous alloys and hydrogen

Lin Huai-Jun Zhu Yun-Feng Liu Ya-Na Li Li-Quan Zhu Min

Citation:

Research progress of interactions between amorphous alloys and hydrogen

Lin Huai-Jun, Zhu Yun-Feng, Liu Ya-Na, Li Li-Quan, Zhu Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Amorphous alloys are a group of novel mechanical and functional materials that possess remarkably improved properties, such as mechanical property, wear property, anti-corrosion property, magnetic property and catalytic property, compared with those of their crystalline counterparts. The interactions between amorphous alloys and hydrogen can lead to various interesting physical and chemical phenomena, and also important applications. Typically, some amorphous alloys can store more hydrogen with faster kinetics than their crystalline counterparts due to the disordered atomic structures, which make them promising candidates for hydrogen storage. Hydrogen induced optical transformation in amorphous alloy film with thickness on a nanoscale makes them suitable for developing optical switchable windows. Hydrogen could be used as a sensitive probe to study the atomic structures of amorphous alloys. Amorphous alloys, whose structures are similar to defects in crystalline alloys (vacancies, dislocations, boundaries, ect.), are a group of suitable objects to study the interactions between hydrogen and defects. Amorphous alloys are also promising membranes materials for industrial hydrogen gas purification. Micro-alloying by hydrogenation could enhance the plasticity and glass-forming ability of amorphous alloy.In this review, recent research progress of interactions between amorphous alloys and hydrogen are summarized from two main aspects: fundamental research and practical applications. In the aspect of fundamental research, we firstly review the recent study on hydrogen in the amorphous alloy, including the hydrogen concentration and distribution, hydrogen occupancy type and geometric size, hydrogen diffusion and thermodynamics and other relevant physical and chemical issues. Secondly, the studies on the effects of hydrogenation on thermal stability, magnetic property and internal friction of amorphous alloys, together with some discussion on the corresponding mechanisms are summarized. Thirdly, hydrogen embrittlement of amorphous alloy and the corresponding prevention techniques, together with the studies of the interactions between hydrogen and defects in crystalline materials such as vacancies, dislocations and boundaries in material, are also involved. In the aspect of practical applications, we firstly review recent advances in amorphous hydrogen storage alloys, focusing on transition metal based amorphous alloys and Mg based alloys. Secondly, amorphous alloy films for hydrogen purification, hydrogen sensors and optical switchable windows are reviewed. Thirdly, some positive influences introduced by hydrogenation on amorphous alloys are discussed, typically on enhancing plasticity and glass-forming ability. Besides the above, hydrogen induced amorphization on crystalline alloy, the use of amorphous alloy for preparing nanocrystalline hydrogen storage materials, and using hydrogenation to crack bulk amorphous alloys to produce amorphous alloys powders are also discussed. In the last section of this review, we try to give our own viewpoint of the future perspectives of relevant researches and applications of interactions between hydrogen and amorphous alloys.
    [1]

    Klement W, Willens R H, Duwez P L 1960 Nature 187 869

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Engineer. R: Reports 44 45

    [5]

    Li Z, Bai H Y, Zhao D Q, Pan M X, Wang W L, Wang W H 2005 Acta Phys. Sin. 54 652 (in Chinese) [李正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华 2005 物理学报 54 652]

    [6]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [7]

    Kirchheim R, Sommer F, Schluckebier G 1982 Acta Metall. 30 1059

    [8]

    Kirchheim R 1988 Prog. Mater. Sci. 32 261

    [9]

    Dong F Y, Luo L S, Su Y Q, Guo J J, Fu H Z 2013 Rare Metal Mater. Engineer. 42 1536 (in Chinese) [董福宇, 骆良顺, 苏彦庆, 郭景杰, 傅恒志 2013 稀有金属材料与工程 42 1536]

    [10]

    Eliaz N, Eliezer D 1999 Adv. Perform. Mater. 6 5

    [11]

    Rush J J, Rowe J M, Maeland A J 1980 J. Phys. F: Metal Phys. 10 L283

    [12]

    Spit F H M, Drijver J W, Radelaar S 1980 Scripta Metall. 14 1071

    [13]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [14]

    Lin H J, He M, Pan S P, Gu L, Li H W, Wang H, Ouyang L Z, Liu J W, Ge T P, Wang D P, Wang W H, Akiba E, Zhu M 2016 Acta Mater. 120 68

    [15]

    Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A 2005 Acta Mater. 53 3703

    [16]

    Dolan M D, Dave N C, Ilyushechkin A Y, Morpeth L D, McLennan K G 2006 J. Membrane Sci. 285 30

    [17]

    Hara S, Sakaki K, Itoh N, Kimura H M, Asami K, Inoue A 2000 J. Membrane Sci. 164 289

    [18]

    Ding H Y, Yao K F 2014 Rare Metal Mater. Engineer. 43 1787 (in Chinese) [丁红瑜, 姚可夫 2014 稀有金属材料与工程 43 1787]

    [19]

    Richardson T J, Slack J L, Armitage R D, Kostecki R, Farangis B, Rubin M D 2001 Appl. Phys. Lett. 78 3047

    [20]

    Chaudhari P, Cuomo J J, Gambino R J 1973 Appl. Phys. Lett. 22 337

    [21]

    Victoria M, Westerwaal R J, Dam B, van Mechelen J L M 2016 ACS Sensors 1 222

    [22]

    Zhao Q, Li Y, Song Y, Cui X, Sun D, Fang F 2013 Appl. Phys. Lett. 102 161901

    [23]

    Dong F, Lu S, Zhang Y, Luo L, Su Y, Wang B, Huang H, Xiang Q, Yuan X, Zuo X 2017 J. Alloy Compud. 695 3183

    [24]

    Dong F, Su Y, Luo L, Wang L, Wang S, Guo J, Fu H 2012 Int. J. Hydrogen Energy 37 14697

    [25]

    Granata D, Fischer E, Löffler J F 2015 Acta Mater. 99 415

    [26]

    Su Y, Dong F, Luo L, Guo J, Han B, Li Z, Wang B, Fu H 2012 J. Non-Cryst. Solids 358 2606

    [27]

    Huot J, Ravnsbæk D B, Zhang J, Cuevas F, Latroche M, Jensen T R 2013 Prog. Mater. Sci. 58 30

    [28]

    Harris J H, Curtin W A, Tenhover M A 1987 Phys. Rev. B 36 5784

    [29]

    Fries S M, Wagner H G, Campbell S J, Gonser U, Blaes N, Steiner P 1985 J. Phys. F: Metal Phys. 15 1179

    [30]

    Itoh K, Kanda K, Aoki K, Fukunaga T 2003 J. Alloy Compud. 348 167

    [31]

    Fukunaga T, Itoh K, Orimo S, Aoki K 2004 Mater. Sci. Engineer. B 108 105

    [32]

    Völkl J, Alefeld G 1978 Hydrogen in Metals I: Basic Properties (Berlin & New York: Springer-verlag) p321

    [33]

    Eliaz N, Fuks D, Eliezer D 1999 Acta Mater. 47 2981

    [34]

    Lee Y S, Stevenson D A 1985 J. Non-Cryst. Solids 72 249

    [35]

    Kirchheim R 1982 Acta Metall. 30 1069

    [36]

    Knapton A 1977 Platinum Metals Rev. 21 44

    [37]

    Spassov T, Stergioudis G, Ivanov G, Polychroniadis E 1998 Zeitschrift fr Metallkunde 89 23

    [38]

    Huett V, Zander D, Jastrow L, Majzoub E, Kelton K, Köster U 2004 J. Alloy Compud. 379 16

    [39]

    Bowman R Jr, Furlan R, Cantrell J, Maeland A 1984 J. Appl. Phys. 56 3362

    [40]

    Yamaura S, Isogai K, Kimura H, Inoue A 2002 J. Mater. Res. 17 60

    [41]

    Isogai K, Shoji T, Kimura H, Inoue A 2000 Mater. Trans. JIM 41 1486

    [42]

    Peng D, Yan M, Sun J, Shen J, Chen Y, McCartney D 2005 J. Alloy Compud. 400 197

    [43]

    Rangelova V, Spassov T, Neykov N 2004 J. Thermal Analy Calorim. 75 373

    [44]

    Lazarova M, Spassov T, Budurov S 1994 Int. J. Rapid Solidificat. 8 133

    [45]

    Li X G, Otahara T, Takahashi S, Shoji T, Kimura H M, Inoue A 2000 J. Alloy Compud. 297 303

    [46]

    Stolz U, Weller M, Kirchheim R 1986 Scripta Metall. 20 1361

    [47]

    Knzi H U, Agyeman K, Gntherodt H J 1979 Solid State Commun. 32 711

    [48]

    Hasegawa M Takeuchi M, Inoue A 2005 Acta Mater. 53 5297

    [49]

    Hasegawa M, Takeuchi M, Kato H, Inoue A 2004 Acta Mater. 52 1799

    [50]

    Coey J M D, Ryan D, Gignoux D, Liénard A, Rebouillat J P 1982 J. Appl. Phys. 53 7804

    [51]

    Coey J, Ryan D, Boliang Y 1984 J. Appl. Phys. 55 1800

    [52]

    Ryan D H, Coey J M D, Batalla E, Altounian Z, Ström-Olsen J O 1987 Phys. Rev. B 35 8630

    [53]

    Aoki K, Nagano M, Yanagitani A, Masumoto T 1987 J. Appl. Phys. 62 3314

    [54]

    Nagumo M 2016 Characteristic Features of Deformation and Fracture in Hydrogen Embrittlement, in: Fundamentals of Hydrogen Embrittlement pp137-165

    [55]

    Nagumo M, Takahashi T 1976 Mater. Sci. Engineer. 23 257

    [56]

    Jayalakshmi S, Fleury E 2010 J. ASTM International 7 1

    [57]

    He T, Pachfule P, Wu H, Xu Q, Chen P 2016 Nat. Rev. Mater. 1 16059

    [58]

    Sandrock G 1999 J. Alloy Compud. 293-295 877

    [59]

    Buschow K H, van Mal H H 1972 J. Less-Common Metals 29 203

    [60]

    Reilly J J, Johnson J R, Reidinger F, Lynch J F, Tanaka J, Wiswall R H 1980 J. Less-Common Metals 73 175

    [61]

    Maeland A J, Tanner L E, Libowitz G 1980 J. Less-Common Metals 74 279

    [62]

    Aoki K, Masumoto T, Kamachi M 1985 J. Less Common Metals 113 33

    [63]

    Bowman R C Jr 1988 Mater. Sci. Forum. 31 197

    [64]

    Ciureanu M, Ryan D H, Ström-Olsen J O, Trudeau M L 1993 J. Electrochem. Soc. 140 579

    [65]

    Wang H, Lin H J, Cai W T, Ouyang L Z, Zhu M 2016 J. Alloy Compud. 658 280

    [66]

    Inoue A, Masumoto T 1993 Mater. Sci. Engineer. A 173 1

    [67]

    Spassov T, Lyubenova L, Köster U, BaróM D 2004 Mater. Sci. Engineer. A 375-377 794

    [68]

    Spassov T, Köster U 1999 J. Alloy Compud. 287 243

    [69]

    Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H 1999 J. Alloy Compud. 293-295 521

    [70]

    Wu D C, Huang L J, Liang G Y 2008 Acta Phys. Sin. 57 1813 (in Chinese) [吴东昌, 黄林军, 梁工英 2008 物理学报 57 1813]

    [71]

    Lei Y, Wu Y, Yang Q, Wu J, Wang Q 1994 Zeitschrift fr Physikalische Chemie 183 379

    [72]

    Liu W, Wu H, Lei Y, Wang Q, Wu J 1997 J. Alloy Compud. 252 234

    [73]

    Huang L, Wang Y, Tang J, Zhao Y, Liu G, Wang Y, Liu J, Jiao J, Wang W, Jin B, Belfiore L A, Kipper M J 2017 J. Alloy Compud. 694 1140

    [74]

    Lin H J, Wang W H, Zhu M 2012 J. Non-Cryst. Solids 358 1387

    [75]

    Griessen R 1983 Phys. Rev. B 27 7575

    [76]

    Fadonougbo J O, Suh J Y, Han S, Shim C H, Kim G H, Kim M H, Fleury E, Cho Y W 2016 J. Alloy Compud. 660 456

    [77]

    Shao H, Asano K, Enoki H, Akiba E 2009 Scripta Mater. 60 818

    [78]

    El-Eskandarany M S, Aoki K, Sumiyama K, Suzuki K 1997 Scripta Mater. 36 1001

    [79]

    Jiang P, Yu Y D 2013 Rare Metal Mater. Engineer. 42 868 (in Chinese) [江鹏, 于彦东 2013 稀有金属材料与工程 42 868]

    [80]

    Paglieri S N, Pal N K, Dolan M D, Kim S M, Chien W M, Lamb J, Chandra D, Hubbard K M, Moore D P 2011 J. Membrane Sci. 378 42

    [81]

    Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, Song S 2009 J. Membrane Sci. 326 549

    [82]

    Kim K B, Kim K D, Lee D Y, Kim Y C, Fleury E, Kim D H 2007 Mater. Sci. Engineer. A 449-451 934

    [83]

    Yamaura S, Inoue A 2010 J. Membrane Sci. 349 138

    [84]

    Yamaura S, Nakata S, Kimura H, Inoue A 2007 J. Membrane Sci. 291 126

    [85]

    Jayalakshmi S, Choi Y G, Kim Y C, Kim Y B, Fleury E 2010 Intermetallics 18 1988

    [86]

    Brinkman K, Fox E, Korinko P, Missimer D, Adams T, Su D 2011 J. Membrane Sci. 378 301

    [87]

    Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078

    [88]

    Serra E, Kemali M, Perujo A, Ross D K 1998 Metall. Mater. Trans. A 29 1023

    [89]

    Nakano S, Yamaura S, Uchinashi S, Kimura H, Inoue A 2005 Sensors and Actuators B: Chemical 104 75

    [90]

    Zhao Y, Choi I C, Seok M Y, Kim M H, Kim D H, Ramamurty U, Suh J Y, Jang J 2014 Acta Mater. 78 213

    [91]

    Granata D, Fischer E, Löffler J F 2015 Scripta Mater. 103 53

    [92]

    Mahjoub R, Laws K J, Hamilton N E, Granata D, Ferry M 2016 Computat. Mater. Sci. 125 197

    [93]

    Yeh X L, Samwer K, Johnson W L 1983 Appl. Phys. Lett. 42 242

    [94]

    Aoki K, Yamamoto T, Masumoto T 1987 Scripta Metall. 21 27

    [95]

    Aoki K, Yanagitani A, Li X G, Masumoto T 1988 Mater. Sci. Engineer. 97 35

    [96]

    Aoki K, Li X G, Masumoto T 1992 Acta Metall. Mater. 40 1717

    [97]

    Aoki K, Masumoto T 1995 J. Alloy Compud. 231 20

    [98]

    Zhang Q A, Yang D Q 2017 J. Alloy Compud. 711 312

    [99]

    Wu Y, Solberg J K, Yartys V A 2007 J. Alloy Compud. 446-447 178

    [100]

    Lin H J, Ouyang L Z, Wang H, Zhao D Q, Wang W H, Sun D L, Zhu M 2012 International J. Hydrogen Energy 37 14329

    [101]

    Lin H J, Zhang C, Wang H, Ouyang L, Zhu Y, Li L, Wang W, Zhu M 2016 J. Alloy Compud. 685 272

    [102]

    Lin H J, Tang J J, Yu Q, Wang H, Ouyang L Z, Zhao Y J, Liu J W, Wang W H, Zhu M 2014 Nano Energy 9 80

    [103]

    Maeland A J, Libowitz G G 1982 Mater. Lett. 1 3

  • [1]

    Klement W, Willens R H, Duwez P L 1960 Nature 187 869

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Engineer. R: Reports 44 45

    [5]

    Li Z, Bai H Y, Zhao D Q, Pan M X, Wang W L, Wang W H 2005 Acta Phys. Sin. 54 652 (in Chinese) [李正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华 2005 物理学报 54 652]

    [6]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [7]

    Kirchheim R, Sommer F, Schluckebier G 1982 Acta Metall. 30 1059

    [8]

    Kirchheim R 1988 Prog. Mater. Sci. 32 261

    [9]

    Dong F Y, Luo L S, Su Y Q, Guo J J, Fu H Z 2013 Rare Metal Mater. Engineer. 42 1536 (in Chinese) [董福宇, 骆良顺, 苏彦庆, 郭景杰, 傅恒志 2013 稀有金属材料与工程 42 1536]

    [10]

    Eliaz N, Eliezer D 1999 Adv. Perform. Mater. 6 5

    [11]

    Rush J J, Rowe J M, Maeland A J 1980 J. Phys. F: Metal Phys. 10 L283

    [12]

    Spit F H M, Drijver J W, Radelaar S 1980 Scripta Metall. 14 1071

    [13]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [14]

    Lin H J, He M, Pan S P, Gu L, Li H W, Wang H, Ouyang L Z, Liu J W, Ge T P, Wang D P, Wang W H, Akiba E, Zhu M 2016 Acta Mater. 120 68

    [15]

    Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A 2005 Acta Mater. 53 3703

    [16]

    Dolan M D, Dave N C, Ilyushechkin A Y, Morpeth L D, McLennan K G 2006 J. Membrane Sci. 285 30

    [17]

    Hara S, Sakaki K, Itoh N, Kimura H M, Asami K, Inoue A 2000 J. Membrane Sci. 164 289

    [18]

    Ding H Y, Yao K F 2014 Rare Metal Mater. Engineer. 43 1787 (in Chinese) [丁红瑜, 姚可夫 2014 稀有金属材料与工程 43 1787]

    [19]

    Richardson T J, Slack J L, Armitage R D, Kostecki R, Farangis B, Rubin M D 2001 Appl. Phys. Lett. 78 3047

    [20]

    Chaudhari P, Cuomo J J, Gambino R J 1973 Appl. Phys. Lett. 22 337

    [21]

    Victoria M, Westerwaal R J, Dam B, van Mechelen J L M 2016 ACS Sensors 1 222

    [22]

    Zhao Q, Li Y, Song Y, Cui X, Sun D, Fang F 2013 Appl. Phys. Lett. 102 161901

    [23]

    Dong F, Lu S, Zhang Y, Luo L, Su Y, Wang B, Huang H, Xiang Q, Yuan X, Zuo X 2017 J. Alloy Compud. 695 3183

    [24]

    Dong F, Su Y, Luo L, Wang L, Wang S, Guo J, Fu H 2012 Int. J. Hydrogen Energy 37 14697

    [25]

    Granata D, Fischer E, Löffler J F 2015 Acta Mater. 99 415

    [26]

    Su Y, Dong F, Luo L, Guo J, Han B, Li Z, Wang B, Fu H 2012 J. Non-Cryst. Solids 358 2606

    [27]

    Huot J, Ravnsbæk D B, Zhang J, Cuevas F, Latroche M, Jensen T R 2013 Prog. Mater. Sci. 58 30

    [28]

    Harris J H, Curtin W A, Tenhover M A 1987 Phys. Rev. B 36 5784

    [29]

    Fries S M, Wagner H G, Campbell S J, Gonser U, Blaes N, Steiner P 1985 J. Phys. F: Metal Phys. 15 1179

    [30]

    Itoh K, Kanda K, Aoki K, Fukunaga T 2003 J. Alloy Compud. 348 167

    [31]

    Fukunaga T, Itoh K, Orimo S, Aoki K 2004 Mater. Sci. Engineer. B 108 105

    [32]

    Völkl J, Alefeld G 1978 Hydrogen in Metals I: Basic Properties (Berlin & New York: Springer-verlag) p321

    [33]

    Eliaz N, Fuks D, Eliezer D 1999 Acta Mater. 47 2981

    [34]

    Lee Y S, Stevenson D A 1985 J. Non-Cryst. Solids 72 249

    [35]

    Kirchheim R 1982 Acta Metall. 30 1069

    [36]

    Knapton A 1977 Platinum Metals Rev. 21 44

    [37]

    Spassov T, Stergioudis G, Ivanov G, Polychroniadis E 1998 Zeitschrift fr Metallkunde 89 23

    [38]

    Huett V, Zander D, Jastrow L, Majzoub E, Kelton K, Köster U 2004 J. Alloy Compud. 379 16

    [39]

    Bowman R Jr, Furlan R, Cantrell J, Maeland A 1984 J. Appl. Phys. 56 3362

    [40]

    Yamaura S, Isogai K, Kimura H, Inoue A 2002 J. Mater. Res. 17 60

    [41]

    Isogai K, Shoji T, Kimura H, Inoue A 2000 Mater. Trans. JIM 41 1486

    [42]

    Peng D, Yan M, Sun J, Shen J, Chen Y, McCartney D 2005 J. Alloy Compud. 400 197

    [43]

    Rangelova V, Spassov T, Neykov N 2004 J. Thermal Analy Calorim. 75 373

    [44]

    Lazarova M, Spassov T, Budurov S 1994 Int. J. Rapid Solidificat. 8 133

    [45]

    Li X G, Otahara T, Takahashi S, Shoji T, Kimura H M, Inoue A 2000 J. Alloy Compud. 297 303

    [46]

    Stolz U, Weller M, Kirchheim R 1986 Scripta Metall. 20 1361

    [47]

    Knzi H U, Agyeman K, Gntherodt H J 1979 Solid State Commun. 32 711

    [48]

    Hasegawa M Takeuchi M, Inoue A 2005 Acta Mater. 53 5297

    [49]

    Hasegawa M, Takeuchi M, Kato H, Inoue A 2004 Acta Mater. 52 1799

    [50]

    Coey J M D, Ryan D, Gignoux D, Liénard A, Rebouillat J P 1982 J. Appl. Phys. 53 7804

    [51]

    Coey J, Ryan D, Boliang Y 1984 J. Appl. Phys. 55 1800

    [52]

    Ryan D H, Coey J M D, Batalla E, Altounian Z, Ström-Olsen J O 1987 Phys. Rev. B 35 8630

    [53]

    Aoki K, Nagano M, Yanagitani A, Masumoto T 1987 J. Appl. Phys. 62 3314

    [54]

    Nagumo M 2016 Characteristic Features of Deformation and Fracture in Hydrogen Embrittlement, in: Fundamentals of Hydrogen Embrittlement pp137-165

    [55]

    Nagumo M, Takahashi T 1976 Mater. Sci. Engineer. 23 257

    [56]

    Jayalakshmi S, Fleury E 2010 J. ASTM International 7 1

    [57]

    He T, Pachfule P, Wu H, Xu Q, Chen P 2016 Nat. Rev. Mater. 1 16059

    [58]

    Sandrock G 1999 J. Alloy Compud. 293-295 877

    [59]

    Buschow K H, van Mal H H 1972 J. Less-Common Metals 29 203

    [60]

    Reilly J J, Johnson J R, Reidinger F, Lynch J F, Tanaka J, Wiswall R H 1980 J. Less-Common Metals 73 175

    [61]

    Maeland A J, Tanner L E, Libowitz G 1980 J. Less-Common Metals 74 279

    [62]

    Aoki K, Masumoto T, Kamachi M 1985 J. Less Common Metals 113 33

    [63]

    Bowman R C Jr 1988 Mater. Sci. Forum. 31 197

    [64]

    Ciureanu M, Ryan D H, Ström-Olsen J O, Trudeau M L 1993 J. Electrochem. Soc. 140 579

    [65]

    Wang H, Lin H J, Cai W T, Ouyang L Z, Zhu M 2016 J. Alloy Compud. 658 280

    [66]

    Inoue A, Masumoto T 1993 Mater. Sci. Engineer. A 173 1

    [67]

    Spassov T, Lyubenova L, Köster U, BaróM D 2004 Mater. Sci. Engineer. A 375-377 794

    [68]

    Spassov T, Köster U 1999 J. Alloy Compud. 287 243

    [69]

    Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H 1999 J. Alloy Compud. 293-295 521

    [70]

    Wu D C, Huang L J, Liang G Y 2008 Acta Phys. Sin. 57 1813 (in Chinese) [吴东昌, 黄林军, 梁工英 2008 物理学报 57 1813]

    [71]

    Lei Y, Wu Y, Yang Q, Wu J, Wang Q 1994 Zeitschrift fr Physikalische Chemie 183 379

    [72]

    Liu W, Wu H, Lei Y, Wang Q, Wu J 1997 J. Alloy Compud. 252 234

    [73]

    Huang L, Wang Y, Tang J, Zhao Y, Liu G, Wang Y, Liu J, Jiao J, Wang W, Jin B, Belfiore L A, Kipper M J 2017 J. Alloy Compud. 694 1140

    [74]

    Lin H J, Wang W H, Zhu M 2012 J. Non-Cryst. Solids 358 1387

    [75]

    Griessen R 1983 Phys. Rev. B 27 7575

    [76]

    Fadonougbo J O, Suh J Y, Han S, Shim C H, Kim G H, Kim M H, Fleury E, Cho Y W 2016 J. Alloy Compud. 660 456

    [77]

    Shao H, Asano K, Enoki H, Akiba E 2009 Scripta Mater. 60 818

    [78]

    El-Eskandarany M S, Aoki K, Sumiyama K, Suzuki K 1997 Scripta Mater. 36 1001

    [79]

    Jiang P, Yu Y D 2013 Rare Metal Mater. Engineer. 42 868 (in Chinese) [江鹏, 于彦东 2013 稀有金属材料与工程 42 868]

    [80]

    Paglieri S N, Pal N K, Dolan M D, Kim S M, Chien W M, Lamb J, Chandra D, Hubbard K M, Moore D P 2011 J. Membrane Sci. 378 42

    [81]

    Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, Song S 2009 J. Membrane Sci. 326 549

    [82]

    Kim K B, Kim K D, Lee D Y, Kim Y C, Fleury E, Kim D H 2007 Mater. Sci. Engineer. A 449-451 934

    [83]

    Yamaura S, Inoue A 2010 J. Membrane Sci. 349 138

    [84]

    Yamaura S, Nakata S, Kimura H, Inoue A 2007 J. Membrane Sci. 291 126

    [85]

    Jayalakshmi S, Choi Y G, Kim Y C, Kim Y B, Fleury E 2010 Intermetallics 18 1988

    [86]

    Brinkman K, Fox E, Korinko P, Missimer D, Adams T, Su D 2011 J. Membrane Sci. 378 301

    [87]

    Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078

    [88]

    Serra E, Kemali M, Perujo A, Ross D K 1998 Metall. Mater. Trans. A 29 1023

    [89]

    Nakano S, Yamaura S, Uchinashi S, Kimura H, Inoue A 2005 Sensors and Actuators B: Chemical 104 75

    [90]

    Zhao Y, Choi I C, Seok M Y, Kim M H, Kim D H, Ramamurty U, Suh J Y, Jang J 2014 Acta Mater. 78 213

    [91]

    Granata D, Fischer E, Löffler J F 2015 Scripta Mater. 103 53

    [92]

    Mahjoub R, Laws K J, Hamilton N E, Granata D, Ferry M 2016 Computat. Mater. Sci. 125 197

    [93]

    Yeh X L, Samwer K, Johnson W L 1983 Appl. Phys. Lett. 42 242

    [94]

    Aoki K, Yamamoto T, Masumoto T 1987 Scripta Metall. 21 27

    [95]

    Aoki K, Yanagitani A, Li X G, Masumoto T 1988 Mater. Sci. Engineer. 97 35

    [96]

    Aoki K, Li X G, Masumoto T 1992 Acta Metall. Mater. 40 1717

    [97]

    Aoki K, Masumoto T 1995 J. Alloy Compud. 231 20

    [98]

    Zhang Q A, Yang D Q 2017 J. Alloy Compud. 711 312

    [99]

    Wu Y, Solberg J K, Yartys V A 2007 J. Alloy Compud. 446-447 178

    [100]

    Lin H J, Ouyang L Z, Wang H, Zhao D Q, Wang W H, Sun D L, Zhu M 2012 International J. Hydrogen Energy 37 14329

    [101]

    Lin H J, Zhang C, Wang H, Ouyang L, Zhu Y, Li L, Wang W, Zhu M 2016 J. Alloy Compud. 685 272

    [102]

    Lin H J, Tang J J, Yu Q, Wang H, Ouyang L Z, Zhao Y J, Liu J W, Wang W H, Zhu M 2014 Nano Energy 9 80

    [103]

    Maeland A J, Libowitz G G 1982 Mater. Lett. 1 3

  • [1] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [2] Ma Li-Juan, Han Ting, Gao Sheng-Qi, Jia Jian-Feng, Wu Hai-Shun. Effect of monovacancy on stability and hydrogen storage property of Sc/Ti/V-decorated graphene. Acta Physica Sinica, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [3] Yuan Li-Hua, Gong Ji-Jun, Wang Dao-Bin, Zhang Cai-Rong, Zhang Mei-Ling, Su Jun-Yan, Kang Long. Hydrogen storage capacity of alkali metal atoms decorated porous graphene. Acta Physica Sinica, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [4] Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei. Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene. Acta Physica Sinica, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [5] Yin Yue-Hong, Xu Hong-Ping. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field. Acta Physica Sinica, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [6] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [7] Yin Yue-Hong, Chen Hong-Shan, Song Yan. The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations. Acta Physica Sinica, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [8] Zhao Yin-Chang, Dai Zhen-Hong, Sui Peng-Fei, Zhang Xiao-Ling. Study of the high hydrogen storage capacity on 2D Li+BC3 complex. Acta Physica Sinica, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [9] Shen Chao, Hu Ya-Ting, Zhou Shuo, Ma Xiao-Lan, Li Hua. The grand canonical Monte Carlo simulation of hydrogen physisorption on single-walled carbon nanotubes at the low and normal temperatures. Acta Physica Sinica, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [10] Guo Long-Ting, Sun Ji-Zhong, Huang Yan, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of low-energy hydrogen atoms bombarding tungsten (001) surface at different angles and their depth distribution. Acta Physica Sinica, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [11] Huang Yi-Na, Wan Fa-Rong, Jiao Zhi-Jie. The type identification of dislocation loops by TEM and the loop formation in pure Fe implanted with H+*. Acta Physica Sinica, 2011, 60(3): 036802. doi: 10.7498/aps.60.036802
    [12] Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate. Acta Physica Sinica, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [13] Ye Jia-Yu, Liu Ya-Li, Wang Jing-Lin, He Yao. Influence of Zr catalyst on reversible hydrogen storage characteristics of NaAlH4 and Na3AlH6. Acta Physica Sinica, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [14] Liu Xiu-Ying, Wang Chao-Yang, Tang Yong-Jian, Sun Wei-Guo, Wu Wei-Dong, Zhang Hou-Qiong, Liu Miao, Yuan Lei, Xu Jia-Jing. Comparative theoretical study of hydrogen storage in single-walled boron-nitride and carbon nanotubes. Acta Physica Sinica, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [15] Dai Wei, Tang Yong-Jian, Wang Chao-Yang, Sun Wei-Guo. Characteristics of hydrogen storage studied using homemade apparatus. Acta Physica Sinica, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [16] Bao Bing-Hao, Ren Nai-Fei, Wang Guo-Yu. The influence of anisotropic fields on stress-impedance effect in amorphous alloys. Acta Physica Sinica, 2008, 57(4): 2519-2523. doi: 10.7498/aps.57.2519
    [17] Fang Fang, Zheng Shi-You, Zhou Guang-You, Chen Guo-Rong, Sun Da-Lin. Hydrogen-induced changes in optical and electrical properties of LaMg2Ni alloy film. Acta Physica Sinica, 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [18] Tang Yuan-Hong, Lin Liang-Wu, Guo Chi. Hydrogen storage mechanism of multiwalled carbon nanotube bundles studied by X-ray absorption spectra. Acta Physica Sinica, 2006, 55(8): 4197-4201. doi: 10.7498/aps.55.4197
    [19] Zheng Hong, Wang Shao-Qing, Cheng Hui-Ming. Effect of micropore on hydrogen adsorption of single walled carbon nanotubes. Acta Physica Sinica, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
    [20] RONG CHUAN-BING, ZHAO YU-HUA, XU MIN, ZHAO HENG-HE, CHEHG LI-ZHI, HE KAI-YUAN. STRUCTURE AND MAGNETIC PROPERTIES OF Fe62Co8-x(Cr,Mo)xNb4Zr6B20 AMORPHOUSALLOY WITH A WIDE SUPERCOOLED LIQUID REGION. Acta Physica Sinica, 2001, 50(11): 2235-2240. doi: 10.7498/aps.50.2235
Metrics
  • Abstract views:  7690
  • PDF Downloads:  591
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2017
  • Accepted Date:  08 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回