Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrications and mechanical behaviors of amorphous fibers

Yi Jun

Citation:

Fabrications and mechanical behaviors of amorphous fibers

Yi Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Mechanical properties of micro- and nanoscale fibers are superior to their bulk counterparts, and their mechanical behaviors are different from each other. Homogeneous amorphous fibers with smooth surfaces and controllable sizes can be continuously drawn from supercooled liquid. Compared with the preparing of crystalline fibers, the manufacturing of amorphous fibers saves much energy and time. Furthermore, amorphous materials have excellent mechanical properties due to their short-ranged ordered and long-ranged disordered structures. Therefore, amorphous fibers have wide engineering applications and research interest. In this paper we review the fabrication and mechanical behaviors of amorphous fibers with excellent mechanical properties including oxide glass fibers and amorphous alloy fibers.There are continuous and discontinuous oxide glass micro-fibers. Discontinuous oxide glass micro-fibers can be fabricated by techniques in which a thin thread of melt flowing from the bottom of a container is broken into segments. Continuous oxide micro-fibers can be fabricated by techniques in which a filament of supercooled liquid is drawn from melt. However, oxide glass nano-fibers can be fabricated by chemical vapor deposition, laser ablation, sol-gel, and thermal evaporation methods. Fabrication techniques of amorphous alloy fibers are very different from those of oxide glass fibers. These techniques adopt in-rotating-water spinning method, melt-extraction method, Taylor method, nanomoulding method, fast drawing method, melt drawing method, and gas atomization method.Microscale oxide glass fiber has a facture strength as high as 6 GPa. The fracture strength of nanoscale oxide glass fiber can reach 26 GPa which is close to the theoretical strength of 30 GPa. On the other hand, the plasticity of microscale amorphous alloy fibers is mediated by shear banding. The shear band spacing decreases with reducing sample size in bending. However, there is no tensile plasticity in microscale amorphous alloy fibers. When the sample size is smaller than the size of shear band core (500 nm), inhomogeneous plastic deformation transforms into homogeneous plastic deformation. The tensile plasticity of amorphous alloy is significantly improved. The homogeneous plastic deformation is mediated by catalyzed shear transformation. The catalyzed shear transformation may be the origin of hardening behaviors of nanoscale amorphous alloy fibers.Fianlly, we summary the unsolved problems in the fabrications and mechanical behaviors of amorphous fibers, and discuss the prospect of amorphous fibers.
      Corresponding author: Yi Jun, jxy305@gmail.com
    • Funds: Project supported by the National Basic Research Program of Chian (Grant No. 2016YFB0700203) and the National Natural Science Foundation of China (Grant No. 51501106).
    [1]

    Wallenberger F T, Bingham P A 2010 Fiberglass and Glass Technology (New York: Springer)

    [2]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [3]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [4]

    Kapany N S, Simms R J 1965 Infrared Phys. 5 69

    [5]

    Bunge C A, Gries T, Beckers M 2017 Polymer Optical Fibres (Cambridge: Woodhead Publishing)

    [6]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [7]

    Chen H S, Turnbull D 1968 J. Chem. Phys. 48 2560

    [8]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1997 Scripta Mater. 37 431

    [9]

    Nishiyama N, Inoue A 1999 Mater. Trans. 40 64

    [10]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [11]

    Nakayama K S, Yokoyama Y, Ono T, Chen M W, Akiyama K, Sakurai T, Inoue A 2010 Adv. Mater. 22 872

    [12]

    Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y, Wang W H 2010 Adv. Eng. Mater. 12 1117

    [13]

    Macfarlane A, Martin G 2002 Glass: A World History (London: The University of Chicago Press) p4

    [14]

    Macfarlane A, Martin G 2004 Science 305 1407

    [15]

    Peng S 2013 Outline of New Glass (Beijing: Higher Education Press) (in Chinese) [彭寿 2013 新玻璃概论(北京: 高等教育出版社)]

    [16]

    Huang D, McKenna G B 2001 J. Chem. Phys. 114 5621

    [17]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113

    [18]

    Yin H F, Wei J 2015 Composite Materials (Beijing: Metallurgical Industry Press) p24 (in Chinese) [尹洪峰, 魏剑 2015复合材料 (北京: 冶金工业出版社) 第24页]

    [19]

    Shelby J E 2005 Introduction to Glass Science and Technology (Cambridge, UK: RS.C) p252

    [20]

    Kamiya K, Yoko T 1986 J. Mater. Sci. 21 842

    [21]

    Yu D P, Hang Q L, Ding Y, Zhang H Z, Bai Z G, Wang J J, Zou Y H, Qian W, Xiong G C, Feng S Q 1998 Appl. Phys. Lett. 73 3076

    [22]

    Zhang M, Bando Y, Wada K, Kurashima K 1999 J. Mater. Sci. Lett. 18 1911

    [23]

    Liang C H, Zhang L D, Meng G W, Wang Y W, Chu Z Q 2000 J. Non-Cryst. Solids 277 63

    [24]

    Liu Z Q, Xie S S, Sun L F, Tang D S, Zhou W Y, Wang C Y, Liu W, Li Y B, Zou X P, Wang G 2012 J. Mater. Res. 16 683

    [25]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [26]

    Inoue A, Hagiwara M, Masumoto T 1982 J. Mater. Sci. 17 580

    [27]

    Chiriac H, óvári T A 1996 Prog. Mater. Sci. 40 333

    [28]

    Rudkowski P, Rudkowska G, Strom-Olsen J O 1991 Mater. Sci. Eng. A 133 158

    [29]

    Zberg B, Arata E R, Uggowitzer P J, Löffler J F 2009 Acta Mater. 57 3223

    [30]

    Nakayama K S, Yokoyama Y, Xie G, Zhang Q S, Chen M W, Sakurai T, Inoue A 2008 Nano Lett. 8 516

    [31]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [32]

    Schroers J, Masuhr A, Johnson W L, Busch R 1999 Phys. Rev. B 60 11855

    [33]

    Nakayama K S, Yokoyama Y, Wada T, Chen N, Inoue A 2012 Nano Lett. 12 2404

    [34]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [35]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [36]

    Petit J, Rivière D, Kellay H, Delville J P 2012 Proc. Natl. Acad. Sci. USA 109 18327

    [37]

    Thomas H C 2000 Mechanical Behavior of Materials (2nd Ed.) (Boston: McGraw Hill)

    [38]

    Argon A S 1979 Acta Metall. 27 47

    [39]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [40]

    Greer J R, De Hosson J T M 2011 Prog. Mater. Sci. 56 654

    [41]

    Liao W, Hu J, Zhang Y 2012 Intermetallics 20 82

    [42]

    Conner R D, Johnson W L, Paton N E, Nix W D 2003 J. Appl. Phys. 94 904

    [43]

    Wang H, Qin F X, Xing D W, Cao F Y, Wang X D, Peng H X, Sun J F 2012 Acta Mater. 60 5425

    [44]

    Yi J, Wang W H, Lewandowski J J 2015 Acta Mater. 87 1

    [45]

    Thamburaja P 2011 J. Mech. Phys. Solids 59 1552

    [46]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879

    [47]

    Argon A S, Shi L T 1983 Acta Metall. 31 499

    [48]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [49]

    Wang C C, Ding J, Cheng Y Q, Wan J C, Tian L, Sun J, Shan Z W, Li J, Ma E 2012 Acta Mater. 60 5370

    [50]

    Megusar J, Argon A S, Grant N J 1979 Mater. Sci. Eng. 38 63

    [51]

    Schuster B E, Wei Q, Hufnagel T C, Ramesh K T 2008 Acta Mater. 56 5091

    [52]

    Tönnies D, Maaß R, Volkert C A 2014 Adv. Mater. 26 5715

    [53]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [54]

    Hasan M, Kumar G 2017 Nanoscale 9 3261

    [55]

    Mattern N, Hermann H, Roth S, Sakowski J, Macht M P, Jovari P, Jiang J 2003 Appl. Phys. Lett. 82 2589

    [56]

    Rosales-Sosa G A, Masuno A, Higo Y, Inoue H 2016 Sci. Rep. 6 23620

    [57]

    Ni H, Li X, Gao H 2006 Appl. Phys. Lett. 88 0431083

    [58]

    Zheng K, Wang C, Cheng Y Q, Yue Y, Han X, Zhang Z, Shan Z, Mao S X, Ye M, Yin Y, Ma E 2010 Nat. Commun. 1 24

    [59]

    Gao H, Ji B, Jäger I L, Arzt E, Fratzl P 2003 Proc. Natl. Acad. Sci. USA 100 5597

  • [1]

    Wallenberger F T, Bingham P A 2010 Fiberglass and Glass Technology (New York: Springer)

    [2]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [3]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [4]

    Kapany N S, Simms R J 1965 Infrared Phys. 5 69

    [5]

    Bunge C A, Gries T, Beckers M 2017 Polymer Optical Fibres (Cambridge: Woodhead Publishing)

    [6]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [7]

    Chen H S, Turnbull D 1968 J. Chem. Phys. 48 2560

    [8]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1997 Scripta Mater. 37 431

    [9]

    Nishiyama N, Inoue A 1999 Mater. Trans. 40 64

    [10]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [11]

    Nakayama K S, Yokoyama Y, Ono T, Chen M W, Akiyama K, Sakurai T, Inoue A 2010 Adv. Mater. 22 872

    [12]

    Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y, Wang W H 2010 Adv. Eng. Mater. 12 1117

    [13]

    Macfarlane A, Martin G 2002 Glass: A World History (London: The University of Chicago Press) p4

    [14]

    Macfarlane A, Martin G 2004 Science 305 1407

    [15]

    Peng S 2013 Outline of New Glass (Beijing: Higher Education Press) (in Chinese) [彭寿 2013 新玻璃概论(北京: 高等教育出版社)]

    [16]

    Huang D, McKenna G B 2001 J. Chem. Phys. 114 5621

    [17]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113

    [18]

    Yin H F, Wei J 2015 Composite Materials (Beijing: Metallurgical Industry Press) p24 (in Chinese) [尹洪峰, 魏剑 2015复合材料 (北京: 冶金工业出版社) 第24页]

    [19]

    Shelby J E 2005 Introduction to Glass Science and Technology (Cambridge, UK: RS.C) p252

    [20]

    Kamiya K, Yoko T 1986 J. Mater. Sci. 21 842

    [21]

    Yu D P, Hang Q L, Ding Y, Zhang H Z, Bai Z G, Wang J J, Zou Y H, Qian W, Xiong G C, Feng S Q 1998 Appl. Phys. Lett. 73 3076

    [22]

    Zhang M, Bando Y, Wada K, Kurashima K 1999 J. Mater. Sci. Lett. 18 1911

    [23]

    Liang C H, Zhang L D, Meng G W, Wang Y W, Chu Z Q 2000 J. Non-Cryst. Solids 277 63

    [24]

    Liu Z Q, Xie S S, Sun L F, Tang D S, Zhou W Y, Wang C Y, Liu W, Li Y B, Zou X P, Wang G 2012 J. Mater. Res. 16 683

    [25]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [26]

    Inoue A, Hagiwara M, Masumoto T 1982 J. Mater. Sci. 17 580

    [27]

    Chiriac H, óvári T A 1996 Prog. Mater. Sci. 40 333

    [28]

    Rudkowski P, Rudkowska G, Strom-Olsen J O 1991 Mater. Sci. Eng. A 133 158

    [29]

    Zberg B, Arata E R, Uggowitzer P J, Löffler J F 2009 Acta Mater. 57 3223

    [30]

    Nakayama K S, Yokoyama Y, Xie G, Zhang Q S, Chen M W, Sakurai T, Inoue A 2008 Nano Lett. 8 516

    [31]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [32]

    Schroers J, Masuhr A, Johnson W L, Busch R 1999 Phys. Rev. B 60 11855

    [33]

    Nakayama K S, Yokoyama Y, Wada T, Chen N, Inoue A 2012 Nano Lett. 12 2404

    [34]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [35]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [36]

    Petit J, Rivière D, Kellay H, Delville J P 2012 Proc. Natl. Acad. Sci. USA 109 18327

    [37]

    Thomas H C 2000 Mechanical Behavior of Materials (2nd Ed.) (Boston: McGraw Hill)

    [38]

    Argon A S 1979 Acta Metall. 27 47

    [39]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [40]

    Greer J R, De Hosson J T M 2011 Prog. Mater. Sci. 56 654

    [41]

    Liao W, Hu J, Zhang Y 2012 Intermetallics 20 82

    [42]

    Conner R D, Johnson W L, Paton N E, Nix W D 2003 J. Appl. Phys. 94 904

    [43]

    Wang H, Qin F X, Xing D W, Cao F Y, Wang X D, Peng H X, Sun J F 2012 Acta Mater. 60 5425

    [44]

    Yi J, Wang W H, Lewandowski J J 2015 Acta Mater. 87 1

    [45]

    Thamburaja P 2011 J. Mech. Phys. Solids 59 1552

    [46]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879

    [47]

    Argon A S, Shi L T 1983 Acta Metall. 31 499

    [48]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [49]

    Wang C C, Ding J, Cheng Y Q, Wan J C, Tian L, Sun J, Shan Z W, Li J, Ma E 2012 Acta Mater. 60 5370

    [50]

    Megusar J, Argon A S, Grant N J 1979 Mater. Sci. Eng. 38 63

    [51]

    Schuster B E, Wei Q, Hufnagel T C, Ramesh K T 2008 Acta Mater. 56 5091

    [52]

    Tönnies D, Maaß R, Volkert C A 2014 Adv. Mater. 26 5715

    [53]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [54]

    Hasan M, Kumar G 2017 Nanoscale 9 3261

    [55]

    Mattern N, Hermann H, Roth S, Sakowski J, Macht M P, Jovari P, Jiang J 2003 Appl. Phys. Lett. 82 2589

    [56]

    Rosales-Sosa G A, Masuno A, Higo Y, Inoue H 2016 Sci. Rep. 6 23620

    [57]

    Ni H, Li X, Gao H 2006 Appl. Phys. Lett. 88 0431083

    [58]

    Zheng K, Wang C, Cheng Y Q, Yue Y, Han X, Zhang Z, Shan Z, Mao S X, Ye M, Yin Y, Ma E 2010 Nat. Commun. 1 24

    [59]

    Gao H, Ji B, Jäger I L, Arzt E, Fratzl P 2003 Proc. Natl. Acad. Sci. USA 100 5597

  • [1] Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan. Mechanical properties and deformation mechanisms of two-dimensional borophene under different loadings. Acta Physica Sinica, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] Zhang Yu-Ye, Zhang Yi-Yi, Wei Wen-Chang, Su Zhi-Cheng, Lan Dan-Quan, Luo Shi-Hao. Molecular dynamics simulation of mechanical and thermal properties of nano-zinc oxide modified cellulose insulating paper. Acta Physica Sinica, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [3] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [4] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [7] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [9] Chen Hua, Li Bao-Wei, Zhao Ming, Zhang Xue-Feng, Jia Xiao-Lin, Du Yong-Sheng. Effect of existence form of La3+ on the properties of the Bayan Obo Mine tailing glass ceramics. Acta Physica Sinica, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [10] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [11] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [12] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [14] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [15] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [16] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [17] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [18] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [20] RONG CHUAN-BING, ZHAO YU-HUA, XU MIN, ZHAO HENG-HE, CHEHG LI-ZHI, HE KAI-YUAN. STRUCTURE AND MAGNETIC PROPERTIES OF Fe62Co8-x(Cr,Mo)xNb4Zr6B20 AMORPHOUSALLOY WITH A WIDE SUPERCOOLED LIQUID REGION. Acta Physica Sinica, 2001, 50(11): 2235-2240. doi: 10.7498/aps.50.2235
Metrics
  • Abstract views:  6351
  • PDF Downloads:  370
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2017
  • Accepted Date:  05 July 2017
  • Published Online:  05 September 2017

/

返回文章
返回