-
Atmospheric optical turbulence severely restricts the performances of electro-optical systems. The turbulent atmosphere causes the intensity of a light beam to fluctuate or scintillate, leads the light beam to wander and makes the images randomly displace, which directly relates to the refractive index structure parameter Cn2. Therefore the knowledge of Cn2 is essential to evaluate and to predict the effects of optical turbulence on electro-optical imagery systems. During the period from December 13, 2016 to January 2, 2017, 30 sets of sounding data, which include temperatures, humidities, pressures, wind speeds, wind directions and atmospheric refractive index structure parameters, are obtained by using a self-developed meteorological radiosonde for turbulence at Marine Meteorological Science Experiment Base at Bohe of Maoming. On the basis of the HMNSP99 outer scale model, an atmospheric optical turbulence outer scale formula of Maoming is obtained by fitting the sounding data. At the same time, the experimental data of the turbulence profiles are statistically averaged, and then based on the Hufnagel-Valley model, a statistical model is obtained, which is appropriate to the variation of the turbulence profile on the coast. According to Tatarski turbulence parameterization and the Maoming outer scale formula, the new estimated Cn2 values are compared with their experimental observations and the results from other already defined models, respectively. Statistical analysis shows that the overall correlation coefficients of log10(Cn2) between observed values and estimated values by using the new fitting Maoming outer scale formula, the HMNSP99 model, the Dewan model and the Coulman model are 0.924, 0.848, 0.763 and 0.651, respectively. Also, both the trends and magnitudes for these four outer scale models are consistent with each other. The errors of the above four outer scale models are very small:their overall average absolute errors and average relative errors are 0.514 and 2.963%, 0.627 and 3.612%, 0.943 and 5.439%, 0.766 and 4.417%, respectively, and the error of the Maoming outer scale model is smallest. The reliabilities and validities of the new outer scale and Cn2 models are further verified. In addition, it is found that the occurrence of upper air optical turbulence is closely related to wind shear and temperature gradient. The results support the prediction of the atmospheric optical turbulence profile required for electro-optical engineering on the coast.
-
Keywords:
- coast /
- turbulence profile /
- parameterization /
- outer scale
[1] Song Z F 1990 Applied Atmospheric Optics (Beijing: China Meteorological Press) pp67-70 (in Chinese) [宋正方1990应用大气光学基础(北京: 气象出版社) 第6770页]
[2] Hutt D L 1999 Opt. Eng. 38 1288
[3] Kunz G J, Moerman M M, Eijk A M J V, Dosshammel S M, Tsintikidis D 2004 Proc. SPIE 5237 81
[4] Fried D L 1966 J. Opt. Soc. Am. 56 1380
[5] Wyngaard J C, Izumi Y, Stuart A, Collins J R 1971 J. Opt. Soc. Am. 61 1646
[6] Hufnagel R E 1974 Topical Meeting on Optical Propagation Through Turbulence Boulder, Colorado, July 9-11, 1974 p2453
[7] Beland R R, Brown J H 1988 Phys. Scr. 37 419
[8] Coulman C E, Vernin J, Coqueugniot Y, Caccia J L 1988 Appl. Opt. 27 155
[9] Dewan E M, Good R E, Beland R, Brown J 1993 A Model for C_n^2(Optical Turbulence) Profiles Using Radiosonde Data(Phillips Laboratory, Hanscom AFB MA) Technical report No. PL-TR-93-2043
[10] Vanzandt T E, Gage K S, Warnock J M 1981 Twentieth Conference on Radar Meteorology Boston, 1981 p129
[11] Masciadri E, Vernin J, Bougeault P 1999 Astron. Astrophys. Suppl. Ser. 137 185
[12] Sun G, Weng N Q, Xiao L M 2008 High Power Laser and Particle Beams 20 183 (in Chinese) [孙刚, 翁宁泉, 肖黎明 2008 强激光与粒子束 20 183]
[13] Qing C, Wu X Q, Li X B, Zhu W Y, Rao R Z, Mei H P 2015 Chin. J. Lasers 42 0913001 (in Chinese) [青春, 吴晓庆, 李学彬, 朱文越, 饶瑞中, 梅海平 2015 中国激光 42 0913001]
[14] Beland R R, Brown J H, Good R E, Murphy E A 1988 Optical Turbulence Characterization of AMOS, 1985 (US Air Force Geophysics Laboratory, Hanscom AFB MA) Technical report No. AFGL-TR-88-0153
[15] Miller M G, Zieske P L 1979 Turbulence Environment Characterization. (Rome Air Development Center, Griffiss AFB NY) Technical report No. RADC-TR-79-131
[16] Jams R R, Rockway J W, Stoots L B, Julian A J, Hanson D W 1981 Submarine Laser Communications Evaluation Algorithm (Naval Ocean Systems Center) Technical report No. NOSC-TR-673
[17] Wu X Q, Ma C S, Yuan R M, Zeng Z Y, Wang Y J 2003 Chin. J. Quantum Electron. 20 375 (in Chinese) [吴晓庆, 马成胜, 袁仁民,曾宗泳, 王英俭 2003 量子电子学报 20 375]
[18] Tatarski V I 1961 Wave Propagation in A Turbulent Medium (New York: McGraw-Hill) pp46-51
[19] Ruggiero F H, Debenedictis D A 2002 DOD High Performance Computer Users Group Conference Austin, Texas, January 13-14, 2002 p11
[20] Qing C, Wu X Q, Li X B, Huang H H, Cai J 2015 High Power Laser and Particle Beams 27 061009 (in Chinese) [青春, 吴晓庆, 李学彬, 黄宏华, 蔡俊 2015强激光与粒子束 27 061009]
[21] Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astronom. Sin. 55 144 (in Chinese) [吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 144]
-
[1] Song Z F 1990 Applied Atmospheric Optics (Beijing: China Meteorological Press) pp67-70 (in Chinese) [宋正方1990应用大气光学基础(北京: 气象出版社) 第6770页]
[2] Hutt D L 1999 Opt. Eng. 38 1288
[3] Kunz G J, Moerman M M, Eijk A M J V, Dosshammel S M, Tsintikidis D 2004 Proc. SPIE 5237 81
[4] Fried D L 1966 J. Opt. Soc. Am. 56 1380
[5] Wyngaard J C, Izumi Y, Stuart A, Collins J R 1971 J. Opt. Soc. Am. 61 1646
[6] Hufnagel R E 1974 Topical Meeting on Optical Propagation Through Turbulence Boulder, Colorado, July 9-11, 1974 p2453
[7] Beland R R, Brown J H 1988 Phys. Scr. 37 419
[8] Coulman C E, Vernin J, Coqueugniot Y, Caccia J L 1988 Appl. Opt. 27 155
[9] Dewan E M, Good R E, Beland R, Brown J 1993 A Model for C_n^2(Optical Turbulence) Profiles Using Radiosonde Data(Phillips Laboratory, Hanscom AFB MA) Technical report No. PL-TR-93-2043
[10] Vanzandt T E, Gage K S, Warnock J M 1981 Twentieth Conference on Radar Meteorology Boston, 1981 p129
[11] Masciadri E, Vernin J, Bougeault P 1999 Astron. Astrophys. Suppl. Ser. 137 185
[12] Sun G, Weng N Q, Xiao L M 2008 High Power Laser and Particle Beams 20 183 (in Chinese) [孙刚, 翁宁泉, 肖黎明 2008 强激光与粒子束 20 183]
[13] Qing C, Wu X Q, Li X B, Zhu W Y, Rao R Z, Mei H P 2015 Chin. J. Lasers 42 0913001 (in Chinese) [青春, 吴晓庆, 李学彬, 朱文越, 饶瑞中, 梅海平 2015 中国激光 42 0913001]
[14] Beland R R, Brown J H, Good R E, Murphy E A 1988 Optical Turbulence Characterization of AMOS, 1985 (US Air Force Geophysics Laboratory, Hanscom AFB MA) Technical report No. AFGL-TR-88-0153
[15] Miller M G, Zieske P L 1979 Turbulence Environment Characterization. (Rome Air Development Center, Griffiss AFB NY) Technical report No. RADC-TR-79-131
[16] Jams R R, Rockway J W, Stoots L B, Julian A J, Hanson D W 1981 Submarine Laser Communications Evaluation Algorithm (Naval Ocean Systems Center) Technical report No. NOSC-TR-673
[17] Wu X Q, Ma C S, Yuan R M, Zeng Z Y, Wang Y J 2003 Chin. J. Quantum Electron. 20 375 (in Chinese) [吴晓庆, 马成胜, 袁仁民,曾宗泳, 王英俭 2003 量子电子学报 20 375]
[18] Tatarski V I 1961 Wave Propagation in A Turbulent Medium (New York: McGraw-Hill) pp46-51
[19] Ruggiero F H, Debenedictis D A 2002 DOD High Performance Computer Users Group Conference Austin, Texas, January 13-14, 2002 p11
[20] Qing C, Wu X Q, Li X B, Huang H H, Cai J 2015 High Power Laser and Particle Beams 27 061009 (in Chinese) [青春, 吴晓庆, 李学彬, 黄宏华, 蔡俊 2015强激光与粒子束 27 061009]
[21] Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astronom. Sin. 55 144 (in Chinese) [吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 144]
Catalog
Metrics
- Abstract views: 6887
- PDF Downloads: 279
- Cited By: 0