Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sound radiation of cylinder in shallow water investigated by combined wave superposition method

Shang De-Jiang Qian Zhi-Wen He Yuan-An Xiao Yan

Citation:

Sound radiation of cylinder in shallow water investigated by combined wave superposition method

Shang De-Jiang, Qian Zhi-Wen, He Yuan-An, Xiao Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It can be a difficult problem to precisely predict the sound field radiated from a finite elastic structure in shallow water channel because of its strong coupling with up-down boundaries and the fluid medium, whose sound field cannot be calculated directly by current methods, such as Ray theory, normal mode theory and other different methods, which are adaptable to sound fields from idealized point sources in waveguide. So far, there is no reliable prediction method to solve this kind of problem. A combined wave superposition method is proposed for such a problem, which combines the traditional wave superposition method with the transfer function in shallow water channel and the multi-physics field coupling numerical model. This method mainly consists of three sections:1) obtaining the normal velocity on the elastic structure surface in shallow water channel by the finite element method (FEM), whose FEM model includes the up-down boundaries and the completely absorbent sound boundaries in the horizontal direction; 2) getting the equivalent point source strength by traditional wave superposition method; 3) calculating the total sound field by adding up each point source field which is obtained by normal mode method. This method is verified by numerical simulation and theoretical analysis by using an imaginary and elastic spherical sound source respectively, and the results demonstrate that the method is valid and has high precision and calculating efficiency. The acoustic radiation characteristics from elastic cylindrical shells is investigated for different acoustic radiation sources, ocean environments and measurements. The cylindrical shell material is steel, whose radius and length are 3 m and 30 m respectively. The shallow water channel is an ideal waveguide with 50 m in depth, at the upper boundary, i.e., the free surface, the lower boundary is the Neumann boundary, i.e., the normal derivative of the acoustic pressure should be zero. The analysis frequency range is from 30 Hz to 200 Hz. The results show that due to a significant coupling effect of up-down direction boundaries on the sound field, the elastic structure can be equivalent to the point source only in low frequency and far field. The spatial field directivity distribution is more obvious at high frequency. The acoustic power measured by vertical line arrayis greatly influenced by ocean boundary and the depth of target.
      Corresponding author: Qian Zhi-Wen, 15846595689@163.com;xiaoyanb09@hrbeu.edu.cn ; Xiao Yan, 15846595689@163.com;xiaoyanb09@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404079).
    [1]

    Zhang Y G 2014 The Effect and Application of Acoustic Photoelectric Waveguide (Beijing:Publishing House of Electronics Industry) pp117-125 (in Chinese)[张永刚 2014 海洋声光电波导效应及应用(北京:电子工业出版社) 第117125 页]

    [2]

    Koopmann G H, Song L, Fahnline J B 1989 J. Acoust Soc. Am. 86 2433

    [3]

    Miller R D, Moyer Jr E T M, Huang H, berall H 1991 J. Acoust Soc. Am. 89 2185

    [4]

    Fahnline J B, Koopmann G H 1991 J. Acoust Soc. Am. 90 2808

    [5]

    Jeans R, Mathews I C 1992 J. Acoust Soc. Am. 92 1156

    [6]

    Yu F, Chen X Z, Li W B, Chen J 2004 Acta Phys. Sin. 53 2607 (in Chinese)[于飞, 陈心昭, 李卫兵, 陈剑 2004 物理学报 53 2607]

    [7]

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264 (in Chinese)[李卫兵, 陈剑, 毕传兴, 陈心昭 2006 物理学报 55 1264]

    [8]

    Xiong J S, Wu C J, Xu Z Y, Zeng G W 2011 Chin. J. Ship Res. 6 41 (in Chinese)[熊济时, 吴崇健, 徐志云, 曾革委 2011 中国舰船研究 6 41]

    [9]

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258 (in Chinese)[李加庆, 陈进, 杨超, 贾文强 2008 物理学报 57 4258]

    [10]

    Chen H Y, Shang D J, Li Q, Liu Y W 2013 Acta Acoust 38 137 (in Chinese)[陈鸿洋, 商德江, 李琪, 刘永伟 2013 声学学报 38 137]

    [11]

    Zhan G Q, Mao R F 2016 J. Nav. Univ. Eng. 28 4 (in Chinese)[詹国强, 毛荣富 2016 海军工程大学学报 28 4]

    [12]

    Gao Y, Cheng H, Chen J 2008 Trans. Chin. Soc. Agric. Mach. 39 173 (in Chinese)[高煜, 程昊, 陈剑 2008 农业机械学报 39 173]

    [13]

    Wang Y M 2013 Ph. D. Dissertation (Harbin:Harbin Engineering University) (in Chinese)[王玉明 2013 博士学位论文(哈尔滨:哈尔滨工程大学)]

    [14]

    Pan H J, Li J Q, Chen J, Zhang G C, Liu X F 2006 China Mech. Eng. 17 733 (in Chinese)[潘汉军, 李加庆, 陈进, 张桂才, 刘先锋 2006 中国机械工程 17 733]

    [15]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Shi. Mech. 1-2 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 12 178]

    [16]

    Zou Y J, Zhao D Y 2004 J. Vib. Eng. 17 269 (in Chinese)[邹元杰, 赵德有 2004 振动工程学报 17 269]

    [17]

    Wang P, Li T Y, Zhu X 2017 J. Ocean Eng. 142 280

    [18]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [19]

    Qin J X, Boris K, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese)[秦继兴, Boris K, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]

    [20]

    Luo W Y, Yu X L, Yang X F, Zhang Z Z, Zhang R H 2016 Chin. Phys. B 25 124309

    [21]

    Porter M B, Bucker H P 1987 J. Acoust Soc. Am. 82 1349

    [22]

    Etter P C (translated by Cai Z M) 2005 Underwater Acoustics Modeling and Simulation (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp83-88 (in Chinese)[埃特 著 (蔡志明 译) 2005 水声建模与仿真(第3版) (北京:电子工业出版社) 第8388页]

    [23]

    Brekhovskikh L M, Lysanov Y P 2004 Fundamentals of Ocean Acoustics (3th Ed.) (New York:Acoustics Springer) pp72-114

    [24]

    Marburg S, Nolte B 2008 Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods (New York:Acoustics Springer) pp166-178

    [25]

    Jackson D R, Richardson M D (translated by Liu B H, Kan G M, Li G B) 2014 High-Frequency Seafloor Acoustics (Beijing:Ocean Press) pp240-260 (in Chinese)[杰克森, 理查德森 著(刘保华, 阚光明, 李官保 译) 2014 高频海底声学(北京:海洋出版社) 第240260 页]

    [26]

    Weston D E 1963 Radio Ele. Eng. 26 329

  • [1]

    Zhang Y G 2014 The Effect and Application of Acoustic Photoelectric Waveguide (Beijing:Publishing House of Electronics Industry) pp117-125 (in Chinese)[张永刚 2014 海洋声光电波导效应及应用(北京:电子工业出版社) 第117125 页]

    [2]

    Koopmann G H, Song L, Fahnline J B 1989 J. Acoust Soc. Am. 86 2433

    [3]

    Miller R D, Moyer Jr E T M, Huang H, berall H 1991 J. Acoust Soc. Am. 89 2185

    [4]

    Fahnline J B, Koopmann G H 1991 J. Acoust Soc. Am. 90 2808

    [5]

    Jeans R, Mathews I C 1992 J. Acoust Soc. Am. 92 1156

    [6]

    Yu F, Chen X Z, Li W B, Chen J 2004 Acta Phys. Sin. 53 2607 (in Chinese)[于飞, 陈心昭, 李卫兵, 陈剑 2004 物理学报 53 2607]

    [7]

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264 (in Chinese)[李卫兵, 陈剑, 毕传兴, 陈心昭 2006 物理学报 55 1264]

    [8]

    Xiong J S, Wu C J, Xu Z Y, Zeng G W 2011 Chin. J. Ship Res. 6 41 (in Chinese)[熊济时, 吴崇健, 徐志云, 曾革委 2011 中国舰船研究 6 41]

    [9]

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258 (in Chinese)[李加庆, 陈进, 杨超, 贾文强 2008 物理学报 57 4258]

    [10]

    Chen H Y, Shang D J, Li Q, Liu Y W 2013 Acta Acoust 38 137 (in Chinese)[陈鸿洋, 商德江, 李琪, 刘永伟 2013 声学学报 38 137]

    [11]

    Zhan G Q, Mao R F 2016 J. Nav. Univ. Eng. 28 4 (in Chinese)[詹国强, 毛荣富 2016 海军工程大学学报 28 4]

    [12]

    Gao Y, Cheng H, Chen J 2008 Trans. Chin. Soc. Agric. Mach. 39 173 (in Chinese)[高煜, 程昊, 陈剑 2008 农业机械学报 39 173]

    [13]

    Wang Y M 2013 Ph. D. Dissertation (Harbin:Harbin Engineering University) (in Chinese)[王玉明 2013 博士学位论文(哈尔滨:哈尔滨工程大学)]

    [14]

    Pan H J, Li J Q, Chen J, Zhang G C, Liu X F 2006 China Mech. Eng. 17 733 (in Chinese)[潘汉军, 李加庆, 陈进, 张桂才, 刘先锋 2006 中国机械工程 17 733]

    [15]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Shi. Mech. 1-2 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 12 178]

    [16]

    Zou Y J, Zhao D Y 2004 J. Vib. Eng. 17 269 (in Chinese)[邹元杰, 赵德有 2004 振动工程学报 17 269]

    [17]

    Wang P, Li T Y, Zhu X 2017 J. Ocean Eng. 142 280

    [18]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [19]

    Qin J X, Boris K, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese)[秦继兴, Boris K, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]

    [20]

    Luo W Y, Yu X L, Yang X F, Zhang Z Z, Zhang R H 2016 Chin. Phys. B 25 124309

    [21]

    Porter M B, Bucker H P 1987 J. Acoust Soc. Am. 82 1349

    [22]

    Etter P C (translated by Cai Z M) 2005 Underwater Acoustics Modeling and Simulation (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp83-88 (in Chinese)[埃特 著 (蔡志明 译) 2005 水声建模与仿真(第3版) (北京:电子工业出版社) 第8388页]

    [23]

    Brekhovskikh L M, Lysanov Y P 2004 Fundamentals of Ocean Acoustics (3th Ed.) (New York:Acoustics Springer) pp72-114

    [24]

    Marburg S, Nolte B 2008 Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods (New York:Acoustics Springer) pp166-178

    [25]

    Jackson D R, Richardson M D (translated by Liu B H, Kan G M, Li G B) 2014 High-Frequency Seafloor Acoustics (Beijing:Ocean Press) pp240-260 (in Chinese)[杰克森, 理查德森 著(刘保华, 阚光明, 李官保 译) 2014 高频海底声学(北京:海洋出版社) 第240260 页]

    [26]

    Weston D E 1963 Radio Ele. Eng. 26 329

  • [1] Wang Lei, Huang Yi-Wang, Guo Lin, Ren Chao. Acoustic scattering modeling and sound field characteristics of rough seafloor in shallow sea. Acta Physica Sinica, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] Liu Yun-Peng, Li Yi-Feng, Lan Jun. Dynamically adjustable directional acoustic radiation based on non-uniform cylindrical labyrinth structure. Acta Physica Sinica, 2023, 72(6): 064301. doi: 10.7498/aps.72.20222186
    [3] Hao Wang, Duan Rui, Yang Kun-De. Bayesian geoacoustic parameter inversion based on dispersion characteristics of normal mode water wave and ground wave. Acta Physica Sinica, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [4] Pan Rui-Qi, Li Fan, Du Zhi-Wei, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Acoustic radiation force of elastic spherical shell with eccentric droplet in plane wave acoustic field. Acta Physica Sinica, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [5] Zang Yu-Chen, Lin Wei-Jun, Su Chang, Wu Peng-Fei. Acoustic radiation torque on an off-axis elliptical cylinder in Gauss beams. Acta Physica Sinica, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [6] Zhang Shi-Zhao, Piao Sheng-Chun. Coherent mode coupling in shallow water overlaying sloping elastic ocean bottom. Acta Physica Sinica, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [7] Shi Sheng-Guo, Gao Yuan, Zhang Hao-Yang, Yang Bo-Quan. Sound field reconstruction of structural source based on element radiation superposition method. Acta Physica Sinica, 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [8] Qian Zhi-Wen, Shang De-Jiang, Sun Qi-Hang, He Yuan-An, Zhai Jing-Sheng. Acoustic radiation from a cylinder in shallow water by finite element-parabolic equation method. Acta Physica Sinica, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [9] Guo Wen-Jie, Li Tian-Yun, Zhu Xiang, Qu Kai-Yang. Semi-analytical research on acoustic-structure coupling calculation of partially submerged cylindrical shell. Acta Physica Sinica, 2018, 67(8): 084302. doi: 10.7498/aps.67.20172681
    [10] Yang De-Sen,  Zhang Rui,  Shi Sheng-Guo. Sound radiation from finite cylindrical shell excited by inner finite-size sources. Acta Physica Sinica, 2018, 67(24): 244301. doi: 10.7498/aps.67.20181716
    [11] Pan An, Fan Jun, Wang Bin, Chen Zhi-Gang, Zheng Guo-Yin. Acoustic scattering from the finite periodically ribbed two concentric cylindrical shells. Acta Physica Sinica, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [12] Duan Xiao-Min, Zhao Xin-Yu, Sun Hua-Fei. Multi-Gaussian beam model for ultrasonic surface waves with angle beam rectangular transducers. Acta Physica Sinica, 2014, 63(1): 014301. doi: 10.7498/aps.63.014301
    [13] Pan An, Fan Jun, Zhuo Lin-Kai. Acoustic scattering from a finite quasi-periodic bulkhead cylindrical shell. Acta Physica Sinica, 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [14] Pan An, Fan Jun, Zhuo Lin-Kai. Acoustic scattering from a finite periodically bulkheads in cylindrical shell. Acta Physica Sinica, 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [15] Liu Qi-Neng. Transmission characteristics of elastic wave in 1D solid-solid cylindrical phononic crystal. Acta Physica Sinica, 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [16] Naranmandula, Han Yuan-Chun. The homotopy analysis method for solving nonlinear wave propagation model in inhomogeneous cylindrical shells. Acta Physica Sinica, 2010, 59(5): 2942-2947. doi: 10.7498/aps.59.2942
    [17] Zhang Xiao-Zheng, Bi Chuan-Xing, Xu Liang, Chen Xin-Zhao. Resolution enhancement of nearfield acoustic holography by the wave superposition approach. Acta Physica Sinica, 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [18] Zhang Hai-Bin, Jiang Wei-Kang, Wan Quan. Nearfield acoustic holography based on wave superposition algorithm for cyclostationary sound filed. Acta Physica Sinica, 2008, 57(1): 313-321. doi: 10.7498/aps.57.313
    [19] Xu Liang, Bi Chuan-Xing, Chen Jian, Chen Xin-Zhao. Algorithm and experimental investigation of patch nearfield acoustic holography based on wave superposition approach. Acta Physica Sinica, 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [20] Li Wei-Bing, Chen Jian, Bi Chuan-Xing, Chen Xin-Zhao. Investigation on holographic algorithm and experiment of combined wave superposition approach. Acta Physica Sinica, 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
Metrics
  • Abstract views:  6835
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2017
  • Accepted Date:  29 January 2018
  • Published Online:  20 April 2019

/

返回文章
返回