Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates

Zhang Zhi-Rong Fang Yu-Long Yin Jia-Yun Guo Yan-Min Wang Bo Wang Yuan-Gang Li Jia Lu Wei-Li Gao Nan Liu Pei Feng Zhi-Hong

Citation:

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates

Zhang Zhi-Rong, Fang Yu-Long, Yin Jia-Yun, Guo Yan-Min, Wang Bo, Wang Yuan-Gang, Li Jia, Lu Wei-Li, Gao Nan, Liu Pei, Feng Zhi-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN grown on a foreign substrate leads to poor crystal quality and device reliability.The homo-epitaxial growth of GaN material has low dislocation density,which is the foundation of high performance of AlGaN/GaN highelectronic mobility transistor.However,it is difficult to prepare flat surface of GaN template or GaN substrate in thermal treatment process under the metal-organic chemical vapor deposition (MOCVD) ambient condition in which hydrogen (H2) is commonly used to clean the substrate surface,i.e.,to remove impurities from the substrate surface,since H2 would greatly enhance GaN decomposition in MOCVD high-temperature condition and etch GaN into roughness surfaceIn this work,an alternation gas model of ammonia/hydrogen (NH3/H2) mixed gas and H2 gas is designed.This technique is used in a thermal treatment process of GaN template and substrate by MOCVD.Then,we in-situ grow AlGaN/GaN HEMTs (high electron mobility transistors) on GaN template and GaN substrate,respectively.A series of alternation gas samples with various H2 treatment times is investigated.Optical microscope and atomic force microscope are used to observe the morphologies of GaN template and AlGaN/GaN HEMTs and two-dimensional electron gas (2DEG) mobility and density of AlGaN/GaN HEMTs are measured by contactless Hall measurement.Optical properties of AlGaN/GaN HEMTs are analyzed by photoluminescence at room temperature.The residual impurities of C and O in the GaN epilayer and the interfacial region between GaN epilayer and GaN substrate are analyzed by secondary ion mass spectrometry.The study results show that H2 enhances GaN decomposition in MOCVD at high temperature,and GaN decomposition greatly strengthens with H2 treatment time increasing leading to rough surface and the decrease of 2DEG mobility.The NH3/2 mixed gas could suppress GaN decomposition and avoid roughn surface,but go against cleaning out the purity from GaN surface,and the relativive intensity of the yellow band is higher.The NH3/2 mixed gas and 2 gas alternate thermal treatment model with proper 2 treatment time on GaN template or GaN substrate,not only obtains atomically flat surface of GaN template and HEMT structure,but also cleans out the purity from GaN surface,which is conducive to the increase of the electric properties of HEMT material.The highest 2DEG mobility reaches to 2136 cm2/V·s with 1 min 2 treatment in the alternate gas thermal treatment process grown on GaN templates and the electrical properties of HEMT material turn excellent.Finally,an alternate model with 5 min NH3/2 mixed gas followed by 1 min 2 and then 4 min mixed gas of thermal treatment process is used,the surface morphology of HEMT grown on GaN substrate shows highly uniform atomically steps and the root-mean-square value is 0.126 nm for 2 μm×2 μm scan area;the HEMT 2DEG mobility 2113 cm2/V·s grown on GaN substrate shows good electric properties,the residual impurities of C and O in the interfacial region between GaN epilayer and GaN substrates are below 1×1017 cm-3,showing clean interfacial.
      Corresponding author: Fang Yu-Long, yvloong@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404100).
    [1]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, L Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [2]

    Khan M A, Kuznia J N, Olson D T, Schaff W J 1994 Appl. Phys. Lett. 65 1121

    [3]

    Fang Y L, Feng Z H, Li C M, Song X B, Yin J Y, Zhou X Y, Wang Y G, L Y J, Cai S J 2015 Chin. Phys. Lett. 32 037202

    [4]

    Bajo M M, Hodges C, Uren M J, Kuball M 2012 Appl. Phys. Lett. 101 033508

    [5]

    Iwata S, Kubo S, Konishi M, Saimei T, Kurai S, Taguchi T, Kainosho K, Yokohata A 2003 Mat. Sci. Semicon. Proc. 6 527

    [6]

    Kotani J, Yamada A, Ishiguro T, Tomabechi S, Nakamura N 2016 Appl. Phys. Lett. 108 152109

    [7]

    Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 023705

    [8]

    Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D 2007 Appl. Phys. Lett. 90 093509

    [9]

    Oshimura Y, Takeda K, Sugiyama1 T, Iwaya M, Kamiyama S, Amano H, Akasaki I, Bandoh A, Udagawa T 2010 Phys. Status Solidi C 7 1974

    [10]

    Demchenko D O, Diallo I C, Reshchikov M A 2016 J. Appl. Phys. 119 035702

    [11]

    Koblmller G, Chu R M, Raman A, Mishra U K, Speck J S 2010 J. Appl. Phys. 107 043527

    [12]

    Bermudez V M 2004 Surf. Sci. 565 89

    [13]

    Koleske D D, Wickenden A E, Henry R L, Twigg M E, Culbertson J C, Gorman R J 1998 Appl. Phys. Lett. 73 2018

    [14]

    Koleske D D, Wickenden A E, Henry R L, Culbertson J C, Twigg M E 2001 J. Cryst. Growth 223 466

    [15]

    Fathallah W, Boufaden T, Jani B E 2007 Phys. Status Solidi C 4 145

    [16]

    Manfra M J, Pfeiffer L N, West K W, Stormer H L, Baldwin K W, Hsu J W P, Lang D V 2000 Appl. Phys. Lett. 77 2888

    [17]

    Chen J T, Hsu C W, Forsberg U, Janzén E 2015 J. Appl. Phys. 117 085301

    [18]

    Detchprohm T, Xia Y, Xi Y, Zhu M, Zhao W, Li Y, Schubert E F, Liu L, Tsvetkov D, Hanser D, Wetzel C 2007 J. Cryst. Growth 298 272

    [19]

    Zanato D, Gokden S, Balkan N, Ridley B K, Schaff W J 2004 Semicond. Sci. Techol. 19 427

    [20]

    Reshchikov M A, Morko H 2005 J. Appl. Phys. 97 061301

    [21]

    Ryou J H, Liu J P, Zhang Y, Horne C A, Lee W, Shen S C, Dupuis R D 2008 Phys. Status Solidi C 5 1849

    [22]

    Calleja E, Sánchez F J, Basak D 1997 Phys. Rev. B 55 4689

    [23]

    Khan A M, Yang J W, Knap W, Frayssinet E, Hu X, Simin G, Prystawko P, Leszczynski M, Grzegory I, Porowski S, Gaska R, Shur M S, Beaumont B, Teisseire M, Neu G 2000 Appl. Phys. Lett. 76 3807

    [24]

    Tomás A P, Fontserè A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C, Cordier Y 2013 J. Appl. Phys. 113 174501

    [25]

    Piotrowska A B, Kamińska E A, Wojtasiak W, Gwarek W, Kucharski R, Zajc M, Prystawko P, Kruszewski P, Ekielski M, Kaczmarski J, Kozubal M, Trajnerowicz A, Taube A 2016 ECS Trans. 75 77

  • [1]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, L Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [2]

    Khan M A, Kuznia J N, Olson D T, Schaff W J 1994 Appl. Phys. Lett. 65 1121

    [3]

    Fang Y L, Feng Z H, Li C M, Song X B, Yin J Y, Zhou X Y, Wang Y G, L Y J, Cai S J 2015 Chin. Phys. Lett. 32 037202

    [4]

    Bajo M M, Hodges C, Uren M J, Kuball M 2012 Appl. Phys. Lett. 101 033508

    [5]

    Iwata S, Kubo S, Konishi M, Saimei T, Kurai S, Taguchi T, Kainosho K, Yokohata A 2003 Mat. Sci. Semicon. Proc. 6 527

    [6]

    Kotani J, Yamada A, Ishiguro T, Tomabechi S, Nakamura N 2016 Appl. Phys. Lett. 108 152109

    [7]

    Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 023705

    [8]

    Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D 2007 Appl. Phys. Lett. 90 093509

    [9]

    Oshimura Y, Takeda K, Sugiyama1 T, Iwaya M, Kamiyama S, Amano H, Akasaki I, Bandoh A, Udagawa T 2010 Phys. Status Solidi C 7 1974

    [10]

    Demchenko D O, Diallo I C, Reshchikov M A 2016 J. Appl. Phys. 119 035702

    [11]

    Koblmller G, Chu R M, Raman A, Mishra U K, Speck J S 2010 J. Appl. Phys. 107 043527

    [12]

    Bermudez V M 2004 Surf. Sci. 565 89

    [13]

    Koleske D D, Wickenden A E, Henry R L, Twigg M E, Culbertson J C, Gorman R J 1998 Appl. Phys. Lett. 73 2018

    [14]

    Koleske D D, Wickenden A E, Henry R L, Culbertson J C, Twigg M E 2001 J. Cryst. Growth 223 466

    [15]

    Fathallah W, Boufaden T, Jani B E 2007 Phys. Status Solidi C 4 145

    [16]

    Manfra M J, Pfeiffer L N, West K W, Stormer H L, Baldwin K W, Hsu J W P, Lang D V 2000 Appl. Phys. Lett. 77 2888

    [17]

    Chen J T, Hsu C W, Forsberg U, Janzén E 2015 J. Appl. Phys. 117 085301

    [18]

    Detchprohm T, Xia Y, Xi Y, Zhu M, Zhao W, Li Y, Schubert E F, Liu L, Tsvetkov D, Hanser D, Wetzel C 2007 J. Cryst. Growth 298 272

    [19]

    Zanato D, Gokden S, Balkan N, Ridley B K, Schaff W J 2004 Semicond. Sci. Techol. 19 427

    [20]

    Reshchikov M A, Morko H 2005 J. Appl. Phys. 97 061301

    [21]

    Ryou J H, Liu J P, Zhang Y, Horne C A, Lee W, Shen S C, Dupuis R D 2008 Phys. Status Solidi C 5 1849

    [22]

    Calleja E, Sánchez F J, Basak D 1997 Phys. Rev. B 55 4689

    [23]

    Khan A M, Yang J W, Knap W, Frayssinet E, Hu X, Simin G, Prystawko P, Leszczynski M, Grzegory I, Porowski S, Gaska R, Shur M S, Beaumont B, Teisseire M, Neu G 2000 Appl. Phys. Lett. 76 3807

    [24]

    Tomás A P, Fontserè A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C, Cordier Y 2013 J. Appl. Phys. 113 174501

    [25]

    Piotrowska A B, Kamińska E A, Wojtasiak W, Gwarek W, Kucharski R, Zajc M, Prystawko P, Kruszewski P, Ekielski M, Kaczmarski J, Kozubal M, Trajnerowicz A, Taube A 2016 ECS Trans. 75 77

  • [1] Li Jian-Jun, Cui Yu-Zheng, Fu Cong-Le, Qin Xiao-Wei, Li Yu-Chang, Deng Jun. Optimization theory and application of epitaxial layer thickness uniformity in vertical MOCVD reaction chamber with multiple MO nozzles. Acta Physica Sinica, 2024, 73(4): 046801. doi: 10.7498/aps.73.20231555
    [2] Liu Qing-Bin, Yu Cui, Guo Jian-Chao, Ma Meng-Yu, He Ze-Zhao, Zhou Chuang-Jie, Gao Xue-Dong, Yu Hao, Feng Zhi-Hong. Influence of polycrystalline diamond on silicon-based GaN material. Acta Physica Sinica, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong. Phase diagram prediction and high pressure melting characteristics of GaN. Acta Physica Sinica, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] Li Dan, Li Guo-Qing. Effects of oxide isolation layer on magnetic properties of L10 FePt film grown on Si substrate. Acta Physica Sinica, 2018, 67(15): 157501. doi: 10.7498/aps.67.20180387
    [6] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] Wang Bo, Fang Yu-Long, Yin Jia-Yun, Liu Qing-Bin, Zhang Zhi-Rong, Guo Yan-Min, Li Jia, Lu Wei-Li, Feng Zhi-Hong. Effect of surface pretreatment on GaN van der Waals epitaxy growth on graphene. Acta Physica Sinica, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [8] Li Zhong-Hui, Luo Wei-Ke, Yang Qian-Kun, Li Liang, Zhou Jian-Jun, Dong Xun, Peng Da-Qing, Zhang Dong-Guo, Pan Lei, Li Chuan-Hao. Surface morphology improvement of homoepitaxial GaN grown on free-standing GaN substrate by metalorganic chemical vapor deposition. Acta Physica Sinica, 2017, 66(10): 106101. doi: 10.7498/aps.66.106101
    [9] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [10] Zhao Xue-Tong, Li Jian-Ying, Jia Ran, Li Sheng-Tao. The Effect of DC degradation and heat-treatment on defects in ZnO varistor. Acta Physica Sinica, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [11] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [12] Zhang Li-Li, Liu Zhan-Hui, Xiu Xiang-Qian, Zhang Rong, Xie Zi-Li. Optimization of the parameters for growth high-qulity GaN film by hydride vapor phase epitaxy. Acta Physica Sinica, 2013, 62(20): 208101. doi: 10.7498/aps.62.208101
    [13] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] Yu Huang-Zhong, Zhou Xiao-Ming, Deng Jun-Yu. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [15] Xing Yan-Hui, Han Jun, Deng Jun, Li Jian-Jun, Xu Chen, Shen Guang-Di. Improved properties of light emitting diode by rough p-GaN grown at lower temperature. Acta Physica Sinica, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [16] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [17] Li Wan-Wan, Sun Kang. Annealing of Cd0.9Zn0.1Te in cadmium vapor. Acta Physica Sinica, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [18] Guo Bao-Zeng, Gong Na, Shi Jian-Ying, Wang Zhi-Yu. Monte Carlo simulation of the hole transport properties for wurtzite GaN. Acta Physica Sinica, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [19] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] Li Wan-Wan, Sun Kang. Study on the annealing of Cd1-xZnxTe in In vapor. Acta Physica Sinica, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
Metrics
  • Abstract views:  7384
  • PDF Downloads:  324
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2017
  • Accepted Date:  01 February 2018
  • Published Online:  05 April 2018

/

返回文章
返回