Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charging mechanism and application of lunar dust grains

Xue Dan Liu Jin-Yuan Li Shu-Han

Citation:

Charging mechanism and application of lunar dust grains

Xue Dan, Liu Jin-Yuan, Li Shu-Han
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since the moon has an extremely rarefied atmosphere, the full spectrum of the electromagnetic radiation of the sun reaches the surface, charging the surface dust and affecting its current charge state. Lunar surface dust thus remains electrostatically charged at all times. Charged lunar dust will adversely affect the operations of most mechanical systems required by manned and unmanned exploration missions. Charged dust will also stubbornly adhere to solar panels and thermal radiators, thus reducing their efficiencies. Researches on the charged lunar dust can help to investigate lunar dusty environment as well as to solve those particle-induced problems by both simulation and experiment in laboratory. In this work, two different charging processes of charged lunar dust in the environment of electron beam and the radiation of ultraviolet source are considered. The computer numerical simulation method is used to analyze these two different charging processes of lunar dust, to explore the charging mechanisms of lunar dusts, and to choose an appropriate way of charging for the lunar environment simulation device in laboratory. On the basis of the classic dust charging equation, the charging equation of a dust in pure electron environment is given for the first time in this work. Meanwhile, the charging process under ultraviolet radiation is discussed and combined with the specific application of charging dusts. A solver of fourth-order Runge-Kutta algorithm is made to solve differential equations under two different irradiation sources. The main simulation results show that:1) in electron environment, the surface dust charge number increases as the particle size and the current intensity of electron guns increase, while the charge number increases as the beam spot radius of electron guns decreases; 2) under ultraviolet radiation, the dust charge number increases with the particle size and irradiance increasing, but charging efficiency is slow. A great dust charge number needs a long time radiation from sun (equivalent to 74 deuterium lamps), which means that more ultraviolet radiation sources are essential to speeding up the experiment in laboratory. Although the calculated efficiency of ultraviolet radiation is lower than electron irradiation, the secondary-electron emission, the scattering and the transmission process of electron irradiation are ignored, which can greatly reduce the efficiency of charging by energetic electron guns in the actual experiment. Therefore, comparing these two charging mechanisms and considering the actual design requirements for the space environment simulation device, charging by lots of ultraviolet radiation is an appropriate scheme for electrification of lunar dusts.
      Corresponding author: Li Shu-Han, lishuhan@mail.dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375039, 11275034).
    [1]

    Ma J X 2006 Physics 35 224 (in Chinese) [马锦绣 2006 物理 35 224]

    [2]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197

    [3]

    Ma J X, Liu J Y, Yu M Y 1997 Phys. Rev. E 55 4627

    [4]

    Liu J Y 1998 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [刘金远 1998 博士学位论文 (合肥:中国科学技术大学)]

    [5]

    Low G M 1969 Apollo 11 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-00171

    [6]

    McDivitt J A 1969 Apollo 12 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-01855

    [7]

    Shepard Jr A B 1971 Apollo 14 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-04112

    [8]

    Scott D R 1971 Apollo 15 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-05161

    [9]

    Morris O G 1972 Apollo 16 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-7230

    [10]

    Morris O G 1972 Apollo 17 Mission Report (Houston: NASA Manned Spacecraft Center) JSC-07904

    [11]

    Gaier J R 2005 The Effects of Lunar Dust on EVA Systems During the Apollo Missions (Cleveland: NASA Glenn Research Center) NASA/TM-2005-213610/REV1

    [12]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 Earth Sci.: J. China Univ. Geosci. 38 339 (in Chinese) [张森森, 王世杰, 李雄耀, 李世杰, 唐红, 李阳, 于雯 2013 地球科学: 中国地质大学学报 38 339]

    [13]

    Shi X B, Li Y Z, Huang Y, Wang J 2007 Chin. J. Space Sci. 27 66 (in Chinese) [石晓波, 李运泽, 黄勇, 王浚 2007 空间科学学报 27 66]

    [14]

    Sun H, Shen Z G, Zhang X J, Ma S L 2015 Manned Spaceflight 21 642 (in Chinese) [孙浩, 沈志刚, 张晓静, 麻树林 2015 载人航天 21 642]

    [15]

    Tong J Y, Li M, Bai Y, Tian D B 2013 Chin. Space Sci. Technol. 4 78 (in Chinese) [童靖宇, 李蔓, 白羽, 田东波 2013 中国空间科学技术 4 78]

    [16]

    Freeman J W, Ibrahim M 1975 Earth, Moon, and Planets 14 103

    [17]

    Wallis M K, Hassan M H A 1983 Astron. and Astrophys. 121 10

    [18]

    Havnes O, Goertz C K, Morfill G E, Grun E, Ip W 1987 J. Geophys. Res. 92 2281

    [19]

    Sternovsky Z, Horanyi M, Robertson S 2001 J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films 19 2533

    [20]

    Colwell J E, Gulbis A A S, Horanyi M, Robertson S 2005 Icarus 175 159

    [21]

    Abbas M M, Tankosic D, Craven P D, LeClair A C, Spann J F 2010 Astrophys. J. 718 795

    [22]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys.Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王楠, 段萍 2010 物理学报 59 8692]

    [23]

    Delzanno G L, Tang X Z 2015 Phys.Plasmas 22 113703

    [24]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing) pp36-69

  • [1]

    Ma J X 2006 Physics 35 224 (in Chinese) [马锦绣 2006 物理 35 224]

    [2]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197

    [3]

    Ma J X, Liu J Y, Yu M Y 1997 Phys. Rev. E 55 4627

    [4]

    Liu J Y 1998 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [刘金远 1998 博士学位论文 (合肥:中国科学技术大学)]

    [5]

    Low G M 1969 Apollo 11 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-00171

    [6]

    McDivitt J A 1969 Apollo 12 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-01855

    [7]

    Shepard Jr A B 1971 Apollo 14 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-04112

    [8]

    Scott D R 1971 Apollo 15 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-05161

    [9]

    Morris O G 1972 Apollo 16 Mission Report (Houston: NASA Manned Spacecraft Center) MSC-7230

    [10]

    Morris O G 1972 Apollo 17 Mission Report (Houston: NASA Manned Spacecraft Center) JSC-07904

    [11]

    Gaier J R 2005 The Effects of Lunar Dust on EVA Systems During the Apollo Missions (Cleveland: NASA Glenn Research Center) NASA/TM-2005-213610/REV1

    [12]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 Earth Sci.: J. China Univ. Geosci. 38 339 (in Chinese) [张森森, 王世杰, 李雄耀, 李世杰, 唐红, 李阳, 于雯 2013 地球科学: 中国地质大学学报 38 339]

    [13]

    Shi X B, Li Y Z, Huang Y, Wang J 2007 Chin. J. Space Sci. 27 66 (in Chinese) [石晓波, 李运泽, 黄勇, 王浚 2007 空间科学学报 27 66]

    [14]

    Sun H, Shen Z G, Zhang X J, Ma S L 2015 Manned Spaceflight 21 642 (in Chinese) [孙浩, 沈志刚, 张晓静, 麻树林 2015 载人航天 21 642]

    [15]

    Tong J Y, Li M, Bai Y, Tian D B 2013 Chin. Space Sci. Technol. 4 78 (in Chinese) [童靖宇, 李蔓, 白羽, 田东波 2013 中国空间科学技术 4 78]

    [16]

    Freeman J W, Ibrahim M 1975 Earth, Moon, and Planets 14 103

    [17]

    Wallis M K, Hassan M H A 1983 Astron. and Astrophys. 121 10

    [18]

    Havnes O, Goertz C K, Morfill G E, Grun E, Ip W 1987 J. Geophys. Res. 92 2281

    [19]

    Sternovsky Z, Horanyi M, Robertson S 2001 J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films 19 2533

    [20]

    Colwell J E, Gulbis A A S, Horanyi M, Robertson S 2005 Icarus 175 159

    [21]

    Abbas M M, Tankosic D, Craven P D, LeClair A C, Spann J F 2010 Astrophys. J. 718 795

    [22]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys.Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王楠, 段萍 2010 物理学报 59 8692]

    [23]

    Delzanno G L, Tang X Z 2015 Phys.Plasmas 22 113703

    [24]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing) pp36-69

  • [1] Zou Dan-Dan, Tu Chen-Sheng, Hu Ping-Zi, Li Chun-Hua, Qian Mu-Yang. Mechanism of low-temperature helical streamer discharge driven by pulsed electromagnetic field. Acta Physica Sinica, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [2] Wen Qi-Lin, Zhong Zhen. Size and density of lunar core estimated using simulated annealing algorithm. Acta Physica Sinica, 2023, 72(8): 089601. doi: 10.7498/aps.72.20222282
    [3] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Zhang Hao-Wen, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence. Acta Physica Sinica, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [4] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [5] Mu Meng, Zhang Hai-Yan, Wang Xiao, Li Cun-Hui, Zhang Xiao-Ping, Wang Ming-Zhi, Zhu Ying-Min, Gao Li-Bo, Zhao Cheng-Xuan, Lu Yang, Wang Wei-Dong. State-of-the-art passive protection technologies of lunar dust. Acta Physica Sinica, 2021, 70(6): 060501. doi: 10.7498/aps.70.20201517
    [6] Liu Jing, Zhang Hai-Bo. Charging characteristics and micromechanism of space electrons irradiated polymers. Acta Physica Sinica, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [7] Wei Wei, Zhang Li-Yuan, Gu Zhao-Lin. Particle charging mechanism and numerical methodology for industrial applications. Acta Physica Sinica, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [8] Liu Jing, Zhang Hai-Bo. Steadystate charging characteristics of polymer irradiated by multi-energetic electrons. Acta Physica Sinica, 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [9] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Characteristics plasma environment isolated conductor surface charging time domain. Acta Physica Sinica, 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [10] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Mechanism of rapid-charging events for international space station. Acta Physica Sinica, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [11] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Physical process and characteristics for rapid charging events at international space station. Acta Physica Sinica, 2013, 62(22): 229401. doi: 10.7498/aps.62.229401
    [12] Bi Xue-Song, Zhu Liang, Yang Fu-Long. Mechanism of current injection in the process of wire electrical explosion. Acta Physica Sinica, 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [13] Gao Zhu-Xiu, Li Hong-Wei, Cai Ming-Hui, Liu Dan-Qiu, Huang Jian-Guo, Han Jian-Wei. Discharging of charged material initiated by impacting of hypervelocity small debris. Acta Physica Sinica, 2012, 61(3): 039601. doi: 10.7498/aps.61.039601
    [14] Liang Yong-Chao, Liu Rang-Su, Zhu Xuan-Min, Zhou Li-Li, Tian Ze-An, Liu Quan-Hui. Simulation study of evolution mechanisms of microstructures during rapid solidification of liquid Mg7Zn3 alloy. Acta Physica Sinica, 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [15] Cui Ping, Lu Yang, Ji Ai-Ling, Sun Gang, Lu Kun-Quan, Wang Xue-Zhao, Shen Rong. Electrical conduction mechanism in polar molecule dominated electrorheological fluid. Acta Physica Sinica, 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [16] Hou Zhao-Yang, Liu Li-Xia, Liu Rang-Su, Tian Ze-An. Simulation of evolution mechanisms of microstructures during rapid solidification of Al-Mg alloy melt. Acta Physica Sinica, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [17] Yang Yan-Nan, Yang Bo, Zhu Jin-Rong, Shen Zhong-Hua, Lu Jian, Ni Xiao-Wu. Mechanism and numerical simulation of laser-target impulse coupling in vacuum. Acta Physica Sinica, 2007, 56(10): 5945-5951. doi: 10.7498/aps.56.5945
    [18] Liu Lei, Xu Sheng-Hua, Liu Jie, Duan Li, Sun Zhi-Wei, Liu Ren-Xiao, Dong Peng. Crystallization of charged colloidal particles: an experimental study. Acta Physica Sinica, 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [19] Li Xue-Chun, Wang You-Nian. Effects of charging at dielectric surfaces on the characteristics of the sheath for plasma immersion ion implantation. Acta Physica Sinica, 2004, 53(8): 2666-2669. doi: 10.7498/aps.53.2666
    [20] HU XI-WEI. A SIMULATION OF DIFFUSION OF CHARGED PARTICLES IN A SPACE CORRELATION TURBULENT ELECTRIC FIELD. Acta Physica Sinica, 1991, 40(12): 1942-1947. doi: 10.7498/aps.40.1942
Metrics
  • Abstract views:  6612
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2018
  • Accepted Date:  20 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回