Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of lattice mismatch stress on magnetic domain of epitaxial single crystal (BiTm)3(GaFe)5O12 film

Hao Jun-Xiang Yang Qing-Hui Zhang Huai-Wu Wen Qi-Ye Zhong Zhi-Yong Jia Li-Jun Ma Bo Wu Yu-Juan

Citation:

Effect of lattice mismatch stress on magnetic domain of epitaxial single crystal (BiTm)3(GaFe)5O12 film

Hao Jun-Xiang, Yang Qing-Hui, Zhang Huai-Wu, Wen Qi-Ye, Zhong Zhi-Yong, Jia Li-Jun, Ma Bo, Wu Yu-Juan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Yttrium iron garnet (YIG) film is a kind of magnetic film and has been investigated extensively because of its excellent magnetic properties and various applications in different fields. Generally, the easy-axis of the film is in-plane and can be changed from in-plane to out-of-plane by introducing some Bi3+ ions into the dodecahedral sites as it has big uniaxial anisotropy, which will be very important in magnetic bubble memories, magneto-optical devices and the new development of spin-wave logic devices. In comparison with many other preparation techniques, the liquid phase epitaxy (LPE) has been consider as a potential method of realizing perpendicular magnetization film due to its big growth-induced anisotropy. However, the LPE technique has more stringent requirements for lattice match between garnet film and gadolinium gallium garnet (GGG) substrate, especially in the growth of thick film. The lattice match is the key factor in LPE growth if the aim of experiment is to achieve a perfect quality and thick film. In most of experiments, there always exists the lattice mismatch between the film and substrate. Owing to the film and substrate have different chemical compositions, their lattice mismatch stress is unavoidable. The purpose of this paper is to investigate the effect of the stress on the anisotropy and then the magnetic domain of (BiTm)3(GaFe)5O12 single crystal film. In our experiment, the monocrystalline (BiTm)3(GaFe)5O12 films are prepared on (111)-oriented GGG substrates by LPE technique and the effect of lattice mismatch stress on the uniaxial anisotropy and magnetic domain are investigated. It is found that the lattice constant of the film is mainly determined by the content of Bi3+ in the film composition. and the increase of Bi3+ content leads to the increase of the film lattice constant, which affects the lattice mismatch stress between film and substrate. The lattice mismatch stress can adjust the perpendicular anisotropy of film which is the main reason for the domain changes. As the mismatch stress changes from tensile stress to compressive stress gradually, the magnetic bubble domain is transformed first into maze domain, and then into the partially striped domain, finally into the completely striped domain. The mismatch tensile stress is an effective method to enhance perpendicular anisotropy, when the growth-induced perpendicular anisotropy is not large enough. The bubble domain can only appear on the film with large tensile stress. The domain size is closely related to the stress. The domain width becomes wider as the mismatch stress becomes larger and it has the smallest domain size as the stress is minimum. These experimental results are very useful in controlling the uniaxial anisotropy and magnetic domain based on the change of the lattice mismatch stress in the growth process.
      Corresponding author: Yang Qing-Hui, yangqinghui@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472046, 51272036, 51002021, 61131005).
    [1]

    Bobeck A H 1967 Bell Syst. Tech. J. 46 1901

    [2]

    Konishi S 1983 IEEE Trans. Magn. MAG-19 1938

    [3]

    Davies J E, Giess E A 1975 J. Mater. Sci. 10 2156

    [4]

    Paroli P 1984 Thin Solid Films 114 187

    [5]

    Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575

    [6]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G 2016 Nat. Mater. 16 309

    [7]

    Rosencwaig A, Tabor W J 1971 J. Appl. Phys. 42 1643

    [8]

    Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213

    [9]

    Liu X, Sasaki Y, Furdyna J K 2003 Phys. Rev. B 67 205204

    [10]

    Stone P R, Dreher L, Beeman J W, Yu K M, Brandt M S, Dubon O D 2010 Phys. Rev. B 81 205210

    [11]

    Dho J, Hur N H 2007 J. Magn. Magn. Mater. 318 23

    [12]

    Jung C U, Yamada H, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 84 2590

    [13]

    Blank S L, Nielsen J W 1972 J. Cryst. Growth 17 302

    [14]

    Tian L G, Liu X L, Xu S S, Han X X 1989 Acta Phys. Sin. 38 1704(in Chinese) [田亮光, 刘湘林, 许顺生, 韩效溪 1989 物理学报 38 1704]

    [15]

    Hansen P, Witter K, Tolksdorf W 1983 Phys. Rev. B 27 4375

    [16]

    Hansen P 1974 J. Appl. Phys. 45 3638

    [17]

    Kubota M, Shibuya K, Tokunaga Y, Kagawa F, Tsukazaki A, Tokura Y, Kawasaki M 2013 J. Magn. Magn. Mater. 339 63

    [18]

    Guduru P R, Chason E, Freund L B 2003 J. Mech. Phys. Solids 51 2127

    [19]

    Wagner G, Gottschalcrt V, Rhan H, Paufler P 2010 Phys. Stat. Sol. 112 519

    [20]

    Yang Q H, Zhang H W, Liu Y L, Weng Q Y, Ji H 2008 The Fourth National Congress and academic conference of China Crystal Society Mount Huangshan, China 2008, p274 (in Chinese) [杨青慧, 张怀武, 刘颖力, 文岐业, 姬洪 2008中国晶体学会全国会员代表大会暨学术会议中国黄山, 2008, 第274页]

    [21]

    Luchechko A P, Syvorotka I I, Zakharko Y, Syvorotka I M 2013 Solid State Phenom. 200 215

    [22]

    Navarro-Quezada A, Rodrguez A G, Vidal M A, Navarro-Contreras H 2006 J. Cryst. Growth 291 340

    [23]

    Anastassakis E 1990 J. Appl. Phys. 68 4561

    [24]

    Mermoux M, Crisci A, Baillet F, Destefanis V, Rouchon D, Papon A M, Hartmann J M 2010 J. Appl. Phys. 107 013512

    [25]

    Bateman T B 1966 J. Appl. Phys. 37 2194

    [26]

    Makino H, Hibiya T, Matsumi K 1974 AIP Conf. Proc. 18 80

    [27]

    Randles M M 1978 Liquid Phase Epitaxial Growth of Magnetic Garnets (Vol. 1) (Heidelberg: Springer-Verlag) pp80-81

    [28]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley Sons Ltd) pp333-334

    [29]

    Tkachuk S, Fratello V J, Krafft C, Lang G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 4238

    [30]

    Heinz D M, Besser P J, Owens J M, Mee J E, Pulliam G R 1971 J. Appl. Phys. 42 1243

    [31]

    Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052

    [32]

    Hansen P, Tolksdorf W, Witter K, Robertson J 1984 IEEE Trans. Magn. MAG-20 1099

    [33]

    Wen D, Zhang H, Hui X, Wang Y, Zhong Z, Bai F 2014 IEEE Trans. Magn. 50 2801804

    [34]

    Hansen P, Klages C, Witter K 1988 J. Appl. Phys. 63 2058

    [35]

    Nistor I, Krafft C, Rojas R, Mayergoyz I D 2004 IEEE Trans. Magn. 40 2832

    [36]

    Wen D, Zhang H, Yang X, L Q, Bai F 2017 J. Alloys Compd. 690 836

    [37]

    Zhu J, Su Y C, Pan J, Feng G L 2013 Acta Phys. Sin. 62 167503(in Chinese) [朱洁, 苏垣昌, 潘靖, 封国林 2013 物理学报 62 167503]

    [38]

    Shen D F, Du T D, Wang L J, Zhang W Z 1991 Acta Phys. Sin. 40 653(in Chinese) [沈德芳, 杜腾达, 王丽娟, 张伟珠 1991 物理学报 40 653]

    [39]

    Hansen P, Witter K 1985 J. Appl. Phys. 58 454

    [40]

    Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M, Tokura Y 2012 Appl. Phys. Express 5 103002

    [41]

    Mee J E, Pulliam G R, Archer J L, Besser P J 1969 IEEE Trans. Magn. Mag-5 717

  • [1]

    Bobeck A H 1967 Bell Syst. Tech. J. 46 1901

    [2]

    Konishi S 1983 IEEE Trans. Magn. MAG-19 1938

    [3]

    Davies J E, Giess E A 1975 J. Mater. Sci. 10 2156

    [4]

    Paroli P 1984 Thin Solid Films 114 187

    [5]

    Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575

    [6]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G 2016 Nat. Mater. 16 309

    [7]

    Rosencwaig A, Tabor W J 1971 J. Appl. Phys. 42 1643

    [8]

    Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213

    [9]

    Liu X, Sasaki Y, Furdyna J K 2003 Phys. Rev. B 67 205204

    [10]

    Stone P R, Dreher L, Beeman J W, Yu K M, Brandt M S, Dubon O D 2010 Phys. Rev. B 81 205210

    [11]

    Dho J, Hur N H 2007 J. Magn. Magn. Mater. 318 23

    [12]

    Jung C U, Yamada H, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 84 2590

    [13]

    Blank S L, Nielsen J W 1972 J. Cryst. Growth 17 302

    [14]

    Tian L G, Liu X L, Xu S S, Han X X 1989 Acta Phys. Sin. 38 1704(in Chinese) [田亮光, 刘湘林, 许顺生, 韩效溪 1989 物理学报 38 1704]

    [15]

    Hansen P, Witter K, Tolksdorf W 1983 Phys. Rev. B 27 4375

    [16]

    Hansen P 1974 J. Appl. Phys. 45 3638

    [17]

    Kubota M, Shibuya K, Tokunaga Y, Kagawa F, Tsukazaki A, Tokura Y, Kawasaki M 2013 J. Magn. Magn. Mater. 339 63

    [18]

    Guduru P R, Chason E, Freund L B 2003 J. Mech. Phys. Solids 51 2127

    [19]

    Wagner G, Gottschalcrt V, Rhan H, Paufler P 2010 Phys. Stat. Sol. 112 519

    [20]

    Yang Q H, Zhang H W, Liu Y L, Weng Q Y, Ji H 2008 The Fourth National Congress and academic conference of China Crystal Society Mount Huangshan, China 2008, p274 (in Chinese) [杨青慧, 张怀武, 刘颖力, 文岐业, 姬洪 2008中国晶体学会全国会员代表大会暨学术会议中国黄山, 2008, 第274页]

    [21]

    Luchechko A P, Syvorotka I I, Zakharko Y, Syvorotka I M 2013 Solid State Phenom. 200 215

    [22]

    Navarro-Quezada A, Rodrguez A G, Vidal M A, Navarro-Contreras H 2006 J. Cryst. Growth 291 340

    [23]

    Anastassakis E 1990 J. Appl. Phys. 68 4561

    [24]

    Mermoux M, Crisci A, Baillet F, Destefanis V, Rouchon D, Papon A M, Hartmann J M 2010 J. Appl. Phys. 107 013512

    [25]

    Bateman T B 1966 J. Appl. Phys. 37 2194

    [26]

    Makino H, Hibiya T, Matsumi K 1974 AIP Conf. Proc. 18 80

    [27]

    Randles M M 1978 Liquid Phase Epitaxial Growth of Magnetic Garnets (Vol. 1) (Heidelberg: Springer-Verlag) pp80-81

    [28]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley Sons Ltd) pp333-334

    [29]

    Tkachuk S, Fratello V J, Krafft C, Lang G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 4238

    [30]

    Heinz D M, Besser P J, Owens J M, Mee J E, Pulliam G R 1971 J. Appl. Phys. 42 1243

    [31]

    Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052

    [32]

    Hansen P, Tolksdorf W, Witter K, Robertson J 1984 IEEE Trans. Magn. MAG-20 1099

    [33]

    Wen D, Zhang H, Hui X, Wang Y, Zhong Z, Bai F 2014 IEEE Trans. Magn. 50 2801804

    [34]

    Hansen P, Klages C, Witter K 1988 J. Appl. Phys. 63 2058

    [35]

    Nistor I, Krafft C, Rojas R, Mayergoyz I D 2004 IEEE Trans. Magn. 40 2832

    [36]

    Wen D, Zhang H, Yang X, L Q, Bai F 2017 J. Alloys Compd. 690 836

    [37]

    Zhu J, Su Y C, Pan J, Feng G L 2013 Acta Phys. Sin. 62 167503(in Chinese) [朱洁, 苏垣昌, 潘靖, 封国林 2013 物理学报 62 167503]

    [38]

    Shen D F, Du T D, Wang L J, Zhang W Z 1991 Acta Phys. Sin. 40 653(in Chinese) [沈德芳, 杜腾达, 王丽娟, 张伟珠 1991 物理学报 40 653]

    [39]

    Hansen P, Witter K 1985 J. Appl. Phys. 58 454

    [40]

    Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M, Tokura Y 2012 Appl. Phys. Express 5 103002

    [41]

    Mee J E, Pulliam G R, Archer J L, Besser P J 1969 IEEE Trans. Magn. Mag-5 717

  • [1] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [2] Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Miao Yan-Long, Zhao Zi-Xiang, He Jia-Jun, Ye Hui-Qun, Fang Yun-Zhang. Mechanism of stress induced irreversible magnetic anisotropy in Fe-based alloy ribbons. Acta Physica Sinica, 2022, 71(24): 247501. doi: 10.7498/aps.71.20221509
    [3] Yang Xue, Yang Qing-Hui, Zhang Huai-Wu, Wen Qi-Ye, Bai Fei-Ming, Zhong Zhi-Yong, Zhang Ding, Huang Jian-Tao. Preparation and orientation mechanism analysis of (BiTm)3(GaFe)5O12 magneto-optical single crystal film with out-of-plane orientation. Acta Physica Sinica, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [4] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [5] Li Jin-Cai, Zhan Qing-Feng, Pan Min-Jie, Liu Lu-Ping, Yang Hua-Li, Xie Ya-Li, Xie Shu-Hong, Li Run-Wei. Preparation and magnetic anisotropy of NiFe film with stripe domains. Acta Physica Sinica, 2016, 65(21): 217501. doi: 10.7498/aps.65.217501
    [6] Wang Guang-Jian, Jiang Cheng-Bao. The coercivity of the high temperature magnets Sm(CobalFe0.1Cu0.1Zr0.033)6.9 alloys. Acta Physica Sinica, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [7] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [8] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [9] Hu Yun-Zhi, Sun Hui-Yuan. The formation of vertical Bloch line in the garnet bubble films subjected to pulsed bias field. Acta Physica Sinica, 2008, 57(8): 5256-5260. doi: 10.7498/aps.57.5256
    [10] Shi Fang-Ye, Fang Yun-Zhang, Sun Huai-Jun, Zheng Jin-Ju, Lin Gen-Jin, Wu Feng-Min. Mesostructure investigation of the transverse magnetic anisotropy field in stress-annealed Fe-based nanocrystalline ribbons. Acta Physica Sinica, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [11] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [12] Yue Fang-Yu, Shao Jun, Wei Yan-Feng, Lü Xiang, Huang Wei, Yang Jian-Rong, Chu Jun-Hao. Temperature-dependent absorption spectra investigation of shallow levels in HgCdTe grown by liquid phase epitaxy. Acta Physica Sinica, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [13] Jiang Yong-Yuan, Zhang Yong-Qiang, Shi Hong-Yan, Hou Chun-Feng, Sun Xiu-Dong. The Goos-H?nchen shift on the surface of uniaxially anisotropic left-handed materials. Acta Physica Sinica, 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [14] Shi Yu, Xing Huai-Zhong, Zhang Huai-Wu, Jing Yu-Lan, Liu Ying-Li. Field-induced specific heat for the antiferromagnetic chain with single-ion anisotropy. Acta Physica Sinica, 2005, 54(1): 280-283. doi: 10.7498/aps.54.280
    [15] Du Jun, Sun Liang, Sheng Wen-Ting, You Biao, Lu Mu, Hu An, M. M. Corte-Real, J. Q. Xiao. In-plane ferromagnetic resonance in nano-composite Fe-R-O(R=Hf Nd Dy)films. Acta Physica Sinica, 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [16] Jiang Wen-Hong, Luo Si-Wei, ZhongcunQingjiu. . Acta Physica Sinica, 2002, 51(1): 167-170. doi: 10.7498/aps.51.167
    [17] SHEN WEN-ZHONG, LI ZHEN-YA. SPIN WAVES IN A MAGNETIC SUPERLATTICE WITH SINGLE-ION UNIAXIAL ANISOTROPY. Acta Physica Sinica, 1992, 41(8): 1374-1379. doi: 10.7498/aps.41.1374
    [18] LI HUA, JIANG SHOU-TING, MEI LIANG-MO, GUO YI-CHENG, YANG GUEI-LIN, XU YOU, ZHAI HONG-RU. CALCULATION OF MAGNETIC SINGLE-ION ANISOTROPY AND THE MORIN TRANSITION IN HEMATITE. Acta Physica Sinica, 1988, 37(1): 36-42. doi: 10.7498/aps.37.36
    [19] HAN BAO-SHAN, LI BO-ZANG, NIE XIANG-FU, TANG GUI-DE. INFLUENCE OF CUBIC MAGNETOCRYSTALLINE ANISO-TROPY ON THE STABILITY OF STRIPE DOMAIN AND BUBBLES SUBJECTED TO AN IN-PLANE FIELD. Acta Physica Sinica, 1985, 34(2): 155-163. doi: 10.7498/aps.34.155
    [20] LIN ZHAO-HUA, DAI DAO-SHENG. FORMATION OF THE INTERNAL STRESS FIELD AND DISTRIBUTION OF MAGNETIC ANISOTROPY IN THE AMORPHOUS ALLOY RIBBONS. Acta Physica Sinica, 1982, 31(7): 871-881. doi: 10.7498/aps.31.871
Metrics
  • Abstract views:  6535
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2018
  • Accepted Date:  15 March 2018
  • Published Online:  05 June 2018

/

返回文章
返回