-
The pump-orientation-probe technique is a recently-developed novel transient measurement technique, which has unique advantages in probing the ultrafast dynamics of charge separation in colloidal nanostructures. In this technique, the linearly-polarized pump pulse is applied to generating electron-hole pairs, and the circularly-polarized spin-orientation pulse is used to establish the electron spin polarization, whose dynamics is detected by monitoring the polarization change of the linearly-polarized probe pulse. Initially, the wavefunctions of the electron-hole pairs are spatially overlapped, and the lifetime of the electron spin is short because of the strong electron-hole exchange interaction. If the electrons or the holes are trapped by the surfaces of the colloidal nanostructures, the spatial separations between the electrons and the holes weaken the exchange effect, and thus the lifetime of the electron spin is largely lengthened. The evolutions of electrons and holes from their spatial overlap to separation can be revealed by monitoring the change of the electron spin dynamics. Based on the introduction of the conventional two-beam carrier pump-probe and spin pump-probe techniques, the features and optical layout of three-beam pump-orientation-probe technique are described in depth. The application to probing negative or positive photocharging in CdS colloidal quantum dots is taken for example and discussed in depth. Compared with the conventional time-resolved absorption or time-resolved fluorescence spectroscopy, the pump-orientation-probe technique can detect the dynamics of trapping electrons or holes and distinguish the type of charging state easily and directly, which has particular advantages under the high-power excitation condition. Further outlook of the three-beam pump-orientation-probe technique is also presented finally.
-
Keywords:
- pump-probe /
- spin orientation /
- charge separation /
- ultrafast dynamics
[1] Demtrder W 2008 Laser Spectroscopy (3rd Ed.) (Berlin: Springer) pp609-677
[2] Feng D H, Pan X Q, Li X, Jia T Q, Sun Z R 2013 J. Appl. Phys. 114 093513
[3] Liang P, Hu R R, Chen C, Belykh V V, Jia T Q, Sun Z R, Feng D H, Yakovlev D R, Bayer M 2017 Appl. Phys. Lett. 110 222405
[4] Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]
[5] Wheeler D A, Zhang J Z 2013 Adv. Mater. 25 2878
[6] Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120
[7] Yakovlev D R, Bayer M (edited by Dyakonov M I) 2008 Spin Physics in Semiconductors (Berlin: Springer-Verlag) pp135-177
[8] Feng D H, Akimov I A, Henneberger F 2007 Phys. Rev. Lett. 99 036604
[9] Akimov I A, Feng D H, Henneberger F 2006 Phys. Rev. Lett. 97 056602
[10] Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323
[11] Xia J B, Ge W K, Chang K 2008 Semiconductor Spintronics (Beijing: Science Press) pp1-9 (in Chinese) [夏建白, 葛惟昆, 常凯 2008 半导体自旋电子学 (北京: 科学出版社)第19页]
[12] Li X, Feng D H, Tong H F, Jia T Q, Deng L, Sun Z R, Xu Z Z 2014 J. Phys. Chem. Lett. 5 4310
[13] Feng D H, Yakovlev D R, Pavlov V V, Rodina A V, Shornikova E V, Mund J, Bayer M 2017 Nano Lett. 17 2844
[14] Wu K F, Zhu H M, Liu Z, Rodrguez-Crdoba W, Lian T Q 2012 J. Am. Chem. Soc. 134 10337
[15] Kanai Y, Wu Z G, Grossman J C 2010 J. Mater. Chem. 20 1053
[16] He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007
[17] He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601
[18] Jones M, Lo S S, Scholes G D 2009 Proc. Natl. Acad. Sci. U. S. A. 106 3011
[19] Knowles K E, McArthur E A, Weiss E A 2011 ACS Nano 5 2026
[20] Klimov V I, McBranch D W, Leatherdale C A, Bawendi M G 1999 Phys. Rev. B 60 13740
[21] Kambhampati P 2011 J. Phys. Chem. C 115 22089
[22] Crooker S A, Awschalom D D, Baumberg J J, Flack F, Samarth N 1997 Phys. Rev. B 56 7574
[23] Feng D H, Li X, Jia T Q, Pan X Q, Sun Z R, Xu Z Z 2012 Appl. Phys. Lett. 100 122406
[24] Tong H F, Feng D H, Li X, Deng L, Leng Y X, Jia T Q, Sun Z R 2013 Materials 6 4523
[25] Li X, Feng D H, Pan X Q, Jia T Q, Shan L F, Deng L, Sun Z R 2012 Acta Phys. Sin. 61 207202 (in Chinese) [李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣 2012 物理学报 61 207202]
[26] Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302
[27] Pan Q F, Zhang Z Y, Wang H Z, Lin X, Jin Z M, Cheng Z X, Ma G H 2016 Acta Phys. Sin. 65 127802 (in Chinese) [潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏 2016 物理学报 65 127802]
[28] Glazov M M, Yugova I A, Spatzek S, Schwan A, Varwig S, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. B 82 155325
[29] Yugova I A, Glazov M M, Ivchenko E L, Efros Al L 2009 Phys. Rev. B 80 104436
[30] Fang S Y, Lu H M, Lai T S 2015 Acta Phys. Sin. 64 157201 (in Chinese) [方少寅, 陆海铭, 赖天树 2015 物理学报 64 157201]
[31] Teng L H, Mou L J 2017 Acta Phys. Sin. 66 046802 (in Chinese) [滕利华, 牟丽君 2017 物理学报 66 046802]
[32] Huxter V M, Kovalevskij V, Scholes G D 2005 J. Phys. Chem. B 109 20060
[33] Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325
[34] Feng D H, Shan L F, Jia T Q, Pan X Q, Tong H F, Deng L, Sun Z R, Xu Z Z 2013 Appl. Phys. Lett. 102 062408
[35] Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011
[36] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802
[37] Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661
[38] Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288
-
[1] Demtrder W 2008 Laser Spectroscopy (3rd Ed.) (Berlin: Springer) pp609-677
[2] Feng D H, Pan X Q, Li X, Jia T Q, Sun Z R 2013 J. Appl. Phys. 114 093513
[3] Liang P, Hu R R, Chen C, Belykh V V, Jia T Q, Sun Z R, Feng D H, Yakovlev D R, Bayer M 2017 Appl. Phys. Lett. 110 222405
[4] Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]
[5] Wheeler D A, Zhang J Z 2013 Adv. Mater. 25 2878
[6] Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120
[7] Yakovlev D R, Bayer M (edited by Dyakonov M I) 2008 Spin Physics in Semiconductors (Berlin: Springer-Verlag) pp135-177
[8] Feng D H, Akimov I A, Henneberger F 2007 Phys. Rev. Lett. 99 036604
[9] Akimov I A, Feng D H, Henneberger F 2006 Phys. Rev. Lett. 97 056602
[10] Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323
[11] Xia J B, Ge W K, Chang K 2008 Semiconductor Spintronics (Beijing: Science Press) pp1-9 (in Chinese) [夏建白, 葛惟昆, 常凯 2008 半导体自旋电子学 (北京: 科学出版社)第19页]
[12] Li X, Feng D H, Tong H F, Jia T Q, Deng L, Sun Z R, Xu Z Z 2014 J. Phys. Chem. Lett. 5 4310
[13] Feng D H, Yakovlev D R, Pavlov V V, Rodina A V, Shornikova E V, Mund J, Bayer M 2017 Nano Lett. 17 2844
[14] Wu K F, Zhu H M, Liu Z, Rodrguez-Crdoba W, Lian T Q 2012 J. Am. Chem. Soc. 134 10337
[15] Kanai Y, Wu Z G, Grossman J C 2010 J. Mater. Chem. 20 1053
[16] He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007
[17] He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601
[18] Jones M, Lo S S, Scholes G D 2009 Proc. Natl. Acad. Sci. U. S. A. 106 3011
[19] Knowles K E, McArthur E A, Weiss E A 2011 ACS Nano 5 2026
[20] Klimov V I, McBranch D W, Leatherdale C A, Bawendi M G 1999 Phys. Rev. B 60 13740
[21] Kambhampati P 2011 J. Phys. Chem. C 115 22089
[22] Crooker S A, Awschalom D D, Baumberg J J, Flack F, Samarth N 1997 Phys. Rev. B 56 7574
[23] Feng D H, Li X, Jia T Q, Pan X Q, Sun Z R, Xu Z Z 2012 Appl. Phys. Lett. 100 122406
[24] Tong H F, Feng D H, Li X, Deng L, Leng Y X, Jia T Q, Sun Z R 2013 Materials 6 4523
[25] Li X, Feng D H, Pan X Q, Jia T Q, Shan L F, Deng L, Sun Z R 2012 Acta Phys. Sin. 61 207202 (in Chinese) [李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣 2012 物理学报 61 207202]
[26] Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302
[27] Pan Q F, Zhang Z Y, Wang H Z, Lin X, Jin Z M, Cheng Z X, Ma G H 2016 Acta Phys. Sin. 65 127802 (in Chinese) [潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏 2016 物理学报 65 127802]
[28] Glazov M M, Yugova I A, Spatzek S, Schwan A, Varwig S, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. B 82 155325
[29] Yugova I A, Glazov M M, Ivchenko E L, Efros Al L 2009 Phys. Rev. B 80 104436
[30] Fang S Y, Lu H M, Lai T S 2015 Acta Phys. Sin. 64 157201 (in Chinese) [方少寅, 陆海铭, 赖天树 2015 物理学报 64 157201]
[31] Teng L H, Mou L J 2017 Acta Phys. Sin. 66 046802 (in Chinese) [滕利华, 牟丽君 2017 物理学报 66 046802]
[32] Huxter V M, Kovalevskij V, Scholes G D 2005 J. Phys. Chem. B 109 20060
[33] Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325
[34] Feng D H, Shan L F, Jia T Q, Pan X Q, Tong H F, Deng L, Sun Z R, Xu Z Z 2013 Appl. Phys. Lett. 102 062408
[35] Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011
[36] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802
[37] Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661
[38] Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288
Catalog
Metrics
- Abstract views: 6525
- PDF Downloads: 195
- Cited By: 0