Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influences of hydroxyl groups on friction behavior and energy dissipation of carbon nanotube

Wang Shi-Wei Zhu Peng-Zhe Li Rui

Citation:

Influences of hydroxyl groups on friction behavior and energy dissipation of carbon nanotube

Wang Shi-Wei, Zhu Peng-Zhe, Li Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the influences of hydroxyl groups between interfaces on friction and energy dissipation are investigated by molecular dynamics simulations. The simulation systems include horizontal oriented carbon nanotube and Si substrate. The hydroxyl groups are grafted only on the substrates or between interfaces in different cases. The simulation procedure is as follows. First, the structure of the simulation system is optimized through energy minimization. Then the relaxation is conducted to ensure the the system reaches an equilibrium state. Finally, carbon nanotube moves at a constant speed along the x direction on the Si substrate. The results show that the average friction on carbon nanotube increases significantly due to the formation of hydrogen bonds between interfaces. The number of hydrogen bonds between interfaces increases with hydroxyl group ratio increasing, which is similar to the trend of friction. The chiral angle of carbon nanotube has a certain effect on friction. The friction on the armchair carbon nanotube is larger than on other types of carbon nanotubes. The diameter has an obvious influence on friction. The friction between the interfaces increases with the diameter of carbon nanotube increasing. The reason is that carbon nanotube with a large diameter becomes flattened at the bottom, which leads to the increase of contact area between interfaces. New peaks appear in the phonon state density of simulation system due to the introduction of hydroxyl groups. With the increase of hydroxyl groups ratio, the values of corresponding peaks of hydroxyl groups in the phonon state density become higher, which indicates that the vibration of hydroxyl groups plays a more important role in energy dissipation. When the hydroxyl group ratio on the carbon nanotube and Si substrate reach 10% and 20% respectively, most energy dissipates through the vibration of hydroxyl groups rather than the vibration of the carbon nanotube and Si substrate. The total energy of the system increases with hydroxyl group ratio increasing, and the potential energy of carbon nanotube also increases with the augment of hydroxyl group ratio on the carbon nanotube. However, when the hydroxyl group ratio on the carbon nanotube remains constant, the potential energy of carbon nanotube decreases with the increase of hydroxyl group ratio on Si substrate. This phenomenon becomes obvious when the hydroxyl group ratio is high. The reason can be attributed to the larger interaction between the carbon nanotube and Si substrate. In general, the energy dissipation of the system is related to the total energy, but the energy dissipating through the carbon nanotube may become less with the increase of total energy.
      Corresponding author: Li Rui, lirui@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51475039, 51405337).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.: Condens. Matter 24 313202

    [3]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 1738

    [4]

    van der Wal R L, Miyoshi K, Street K, Tomasek A, Peng H, Liu Y, Margrave J, Khabashesku V 2005 Wear 259 738

    [5]

    Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y 2012 Nano Lett. 12 6043

    [6]

    Ko J H, Kwon S, Byun I S, Jin S C, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137

    [7]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

    [8]

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101 (in Chinese) [李瑞, 密俊霞 2017 物理学报 66 046101]

    [9]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [10]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys Rev. Lett. 96 236102

    [11]

    Zheng X, Lei G, Yao Q, Li Q, Miao Z, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [12]

    Eckstein K H, Hartleb H, Achsnich M M, Schöppler F, Hertel T 2017 ACS Nano 11 10401

    [13]

    Kim S Y, Park H S 2009 Appl. Phys. Lett. 94 101918

    [14]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [15]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [16]

    Kajita S, Tohyama M, Washizu H, Ohmori T, Watanabe H, Shikata S 2015 Tribology Online 10 156

    [17]

    Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W 2007 Sci. 318 780

    [18]

    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X 2015 Environ. Sci. Technol. 49 4255

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.:Condes. Matter 14 783

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [22]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [23]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [25]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [26]

    Plimpton S 1995 J. Comput. Phys 7 1

    [27]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407

    [28]

    Dresselhaus M S, Dresselhaus G, Saito R, Jorio A 2005 Phys. Rep. 409 47

    [29]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [30]

    Hart T R, Aggarwal R L, Lax B 1970 Phys. Rev. B 1 638

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.: Condens. Matter 24 313202

    [3]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 1738

    [4]

    van der Wal R L, Miyoshi K, Street K, Tomasek A, Peng H, Liu Y, Margrave J, Khabashesku V 2005 Wear 259 738

    [5]

    Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y 2012 Nano Lett. 12 6043

    [6]

    Ko J H, Kwon S, Byun I S, Jin S C, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137

    [7]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

    [8]

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101 (in Chinese) [李瑞, 密俊霞 2017 物理学报 66 046101]

    [9]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [10]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys Rev. Lett. 96 236102

    [11]

    Zheng X, Lei G, Yao Q, Li Q, Miao Z, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [12]

    Eckstein K H, Hartleb H, Achsnich M M, Schöppler F, Hertel T 2017 ACS Nano 11 10401

    [13]

    Kim S Y, Park H S 2009 Appl. Phys. Lett. 94 101918

    [14]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [15]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [16]

    Kajita S, Tohyama M, Washizu H, Ohmori T, Watanabe H, Shikata S 2015 Tribology Online 10 156

    [17]

    Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W 2007 Sci. 318 780

    [18]

    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X 2015 Environ. Sci. Technol. 49 4255

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.:Condes. Matter 14 783

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [22]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [23]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [25]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [26]

    Plimpton S 1995 J. Comput. Phys 7 1

    [27]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407

    [28]

    Dresselhaus M S, Dresselhaus G, Saito R, Jorio A 2005 Phys. Rep. 409 47

    [29]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [30]

    Hart T R, Aggarwal R L, Lax B 1970 Phys. Rev. B 1 638

  • [1] LI Kang-rui, WANG Jun, XIA Guo-dong. Thermal conductivity of Janus nanofluids with hydroxylated carbon nanotubes. Acta Physica Sinica, 2025, 74(6): . doi: 10.7498/aps.74.20241657
    [2] Duan Hao-Yang, Yang Ke-Xin, Cao Yi-Gang. Friction characteristics of colloidal particle systems with repulsive interactions of different force ranges. Acta Physica Sinica, 2024, 73(15): 156201. doi: 10.7498/aps.73.20231701
    [3] Du Qing-Xin, Sun Qi-Cheng, Ding Hong-Sheng, Zhang Guo-Hua, Fan Yan-Li, An Fei-Fei. Experimental study on bulk modulus and dissipation of dry and wet granular samples under vertical vibration. Acta Physica Sinica, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [4] Li Peng-Cheng, Tang Chong-Yang, Cheng Liang, Hu Yong-Ming, Xiao Xiang-Heng, Chen Wan-Ping. Reduction of CO2 by TiO2 nanoparticles through friction in water. Acta Physica Sinica, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [5] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [6] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [7] Yu Tian, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Ma Wen-Bo. Dynamic effective mass and power dissipation of the granular material under vertical vibration. Acta Physica Sinica, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [8] He Fei-Fei, Peng Zheng, Yan Xi-Ping, Jiang Yi-Min. Energy dissipation and periodic segregation of vibrated binary granular mixtures. Acta Physica Sinica, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [9] Zhu Pan-Cheng, Bian Qing-Yong, Li Jin-Bin. Relations among different energy dissipations of Euler disk. Acta Physica Sinica, 2015, 64(17): 174501. doi: 10.7498/aps.64.174501
    [10] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [11] Wang Zhi-Ping, Zhu Yun, Wu Ya-Min, Zhang Xiu-Mei. Time-dependent density functional theory studies of dynamics of hydroxy by proton impact. Acta Physica Sinica, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [12] Li Rui, Sun Dai-Hai. Influence of defects on friction and motion of carbon nanotube. Acta Physica Sinica, 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [13] Peng Zheng, Jiang Yi-Min, Liu Rui, Hou Mei-Ying. Energy dissipation of a granular system under vertical vibration. Acta Physica Sinica, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [14] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [15] Li Rui, Hu Yuan-Zhong, Wang Hui. Molecular dynamics simulation on carbon nanotube bundles sandwitched between Si surfaces. Acta Physica Sinica, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [16] Li Shu-Li, Zhang Jian-Min. Energies, electronic structures and magnetic properties of Ni atomic chain encapsulated in carbon nanotubes: a first-principles calculation. Acta Physica Sinica, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [17] Gong Zhong-Liang, Huang Ping. Study on discontinucous energy dissipation mechanism of friction. Acta Physica Sinica, 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [18] Yuan Jian-Hui, Yuan Xiao-Bo. The effects of the grafted hydroxyl on the elastic properties of single-walled carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3666-3673. doi: 10.7498/aps.57.3666
    [19] Xu Zhong-Ming, Huang Ping. Composite oscillator model for the energy dissipation mechanism of friction. Acta Physica Sinica, 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
    [20] Yuan Chang-Qing, Zhao Tong-Jun, Wang Yong-Hong, Zhan Yong. Spectrum analysis on dissipative motion in finite systems. Acta Physica Sinica, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
Metrics
  • Abstract views:  7193
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2018
  • Accepted Date:  15 March 2018
  • Published Online:  05 April 2018

/

返回文章
返回