Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of Bessel-Gaussian vortex beam by combining technology

Yu Tao Xia Hui Fan Zhi-Hua Xie Wen-Ke Zhang Pan Liu Jun-Sheng Chen Xin

Citation:

Generation of Bessel-Gaussian vortex beam by combining technology

Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bessel beam is an important member of the family of non-diffracting beams and has some unique properties which can be used in many areas, such as micro particle manipulating, material processing and optical communication. However, the source of Bessel beam generated by the existing methods can be used only in a short distance due to its low power. In this paper, according to the coherent combining technology, we propose a method to generate a second-order Bessel-Gaussian (BG) beam by loading discrete vortex phase on specific spatially distributed Gaussian beam array. The coherent combining technology can enhance the output power by increasing the number of beams and use the phase-locking technique to maintain the beam quality. The experimental scheme is described as follows. The expanded Gaussian beam is first split by an amplitude-based spatial light modulator, then the Gaussian beam array is incident on a phase-only spatial light modulator to load the discrete vortex phase, and finally the Gaussian beam array loaded with phase can synthesize BG beam in free space. Due to the diffraction effect of the sub-beams, the optical field distribution between the adjacent sub-beams which are loaded with phase differences, are superimposed. As a result, the optical field distribution of the approximate beam can be obtained by coherent synthesis in free space. After that, the degree of similarity between simulated results and theoretical data is analyzed by correlation coefficient, including the comparison of light intensity between experiment and simulation, and the power-in-the-bucket is used to evaluate beam quality. In addition, the topological charge of the synthesized BG beams is verified by the interference method. By studying the number of beams, the waist radius and the radius of the ring, we find some interesting results which are summarized as follows. Firstly, the closed arrangement of Gaussian beam arrays can improve the quality of the synthesized BG beam. Secondly, the smaller the phase difference between the sub-beams, the more easily the discontinuous piston phase approaches to the vortex phase. Therefore, increasing the number of sub-beams can significantly improve the beam quality of the synthesized BG beam and obtain a higher order synthetic BG beam. Finally, we define the parameter k to represent the tightness of a circular array of Gaussian beams. The present study shows that when the parameter k is close to 1, the best experimental results can be obtained. Therefore, the proposed method has important guidance in generating various vortex beams or enhancing the vortex beam power.
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com
    • Funds: Project supported by the Equipment Pre-research Field Fund (Grant No. 6140415020311) and the Hunan Provincial Key Laboratory of High Energy Laser Technology Fund, China (Grant No. GNJGJS04).
    [1]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [2]

    Shu W X, Ke Y G, Liu Y C, Ling X H, Luo H L, Yin X B 2016 Phys. Rev. A 93 013839

    [3]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096

    [4]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2017 Photon. Res. 5 15

    [5]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198

    [6]

    Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molish F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876

    [7]

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854 (in Chinese) [刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854]

    [8]

    Padgett M, Bowman R 2011 Nature Photon. 5 343

    [9]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [10]

    Ngcobo S, Aameur K, Passilly N, Hasnaoui A, Forbes A 2013 Appl. Opt. 52 2093

    [11]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903

    [12]

    Kim D J, Kim J W, Clarkson W A 2014 Appl. Phys. B 117 459

    [13]

    Li Y, Li W, Zhang Z, Miller K, Shori R 2016 Opt. Express 24 1658

    [14]

    Liu Z J, Zhou P, Hou J, Xu X J 2009 Chin. J. Lasers 36 518 (in Chinese) [刘泽金, 周朴, 侯静, 许晓军 2009 中国激光 36 518]

    [15]

    Chu X X, Liu Z J, Zhou P 2013 Laser Phys. Lett. 10 5102

    [16]

    Zhu K C, Tang H Q, Sun X M, Wang X W, Liu T N 2002 Opt. Commun. 207 29

    [17]

    Zhu K C, Tang H Q, Wang X W, Liu T N 2002 Optik 113 222

    [18]

    Zhu K C, Zhou G Q, Li X G, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [19]

    Chu X X, Sun Q, Wang J, Lu P, Xie W K, Xu X J 2015 Sci. Rep. 5 18665

    [20]

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643 (in Chinese) [冯国英, 周寿桓 2009 中国激光 36 1643]

    [21]

    Wang Q M 2008 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [王启明 2008 硕士学位论文 (杭州: 浙江大学)]

    [22]

    Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740 (in Chinese) [李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740]

  • [1]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [2]

    Shu W X, Ke Y G, Liu Y C, Ling X H, Luo H L, Yin X B 2016 Phys. Rev. A 93 013839

    [3]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096

    [4]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2017 Photon. Res. 5 15

    [5]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198

    [6]

    Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molish F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876

    [7]

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854 (in Chinese) [刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854]

    [8]

    Padgett M, Bowman R 2011 Nature Photon. 5 343

    [9]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [10]

    Ngcobo S, Aameur K, Passilly N, Hasnaoui A, Forbes A 2013 Appl. Opt. 52 2093

    [11]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903

    [12]

    Kim D J, Kim J W, Clarkson W A 2014 Appl. Phys. B 117 459

    [13]

    Li Y, Li W, Zhang Z, Miller K, Shori R 2016 Opt. Express 24 1658

    [14]

    Liu Z J, Zhou P, Hou J, Xu X J 2009 Chin. J. Lasers 36 518 (in Chinese) [刘泽金, 周朴, 侯静, 许晓军 2009 中国激光 36 518]

    [15]

    Chu X X, Liu Z J, Zhou P 2013 Laser Phys. Lett. 10 5102

    [16]

    Zhu K C, Tang H Q, Sun X M, Wang X W, Liu T N 2002 Opt. Commun. 207 29

    [17]

    Zhu K C, Tang H Q, Wang X W, Liu T N 2002 Optik 113 222

    [18]

    Zhu K C, Zhou G Q, Li X G, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [19]

    Chu X X, Sun Q, Wang J, Lu P, Xie W K, Xu X J 2015 Sci. Rep. 5 18665

    [20]

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643 (in Chinese) [冯国英, 周寿桓 2009 中国激光 36 1643]

    [21]

    Wang Q M 2008 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [王启明 2008 硕士学位论文 (杭州: 浙江大学)]

    [22]

    Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740 (in Chinese) [李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740]

  • [1] Liu Wei, Jia Qing, Zheng Jian. Wavefront distortion and compensation for weakly relativistic vortex beams propagating in plasma. Acta Physica Sinica, 2024, 73(5): 055203. doi: 10.7498/aps.73.20231635
    [2] Hadiqa⋅ Abdugopur, Tan Le-Tao, Yu Tao, Xie Wen-Ke, Liu Jing, Shao Zheng-Zheng. Study of off-axis incident rotational speed measurement based on coherent synthetic vortex beams. Acta Physica Sinica, 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [3] Fan Hai-Ling, Guo Zhi-Jian, Li Ming-Qiang, Zhuo Hong-Bin. Numerical study of self-focusing and filament formation of intense vortex beams in plasmas. Acta Physica Sinica, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [4] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [5] Chen Tian-Yu, Wang Chang-Shun, Pan Yu-Jia, Sun Li-Li. Recording optical vortices in azo polymer films by applying holographic method. Acta Physica Sinica, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [6] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao. Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [7] Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng. Spiral spectrum analysis and application ofcoherent synthetic vortex beams. Acta Physica Sinica, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [8] Shi Jian-Zhen, Yang Shen, Zou Ya-Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of vortex beams by the four-step phase plates. Acta Physica Sinica, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [9] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [10] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [11] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [12] Ding Pan-Feng, Pu Ji-Xiong. Change of the off-center Laguerre-Gaussian vortex beam while propagation. Acta Physica Sinica, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [13] Zhao Ji-Zhi, Jiang Yue-Song, Ou Jun, Ye Ji-Hai. Scattering of the focused Laguerre-Gaussian beams by a spherical particle. Acta Physica Sinica, 2012, 61(6): 064202. doi: 10.7498/aps.61.064202
    [14] Ding Pan-Feng, Pu Ji-Xiong. Propagation of Laguerre-Gaussian vortex beam. Acta Physica Sinica, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [15] Ou Jun, Jiang Yue-Song, Li Fang, Liu Li. Shifts of beam centroid of Laguerre-Gaussian beams reflected and refracted at a dielectric interface. Acta Physica Sinica, 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [16] Deng Xiao-Jiu, Niu Guo-Jian, Liu Cai-Xia, Xiao Su. Propagation characteristics of nonparaxial Gaussian beams. Acta Physica Sinica, 2011, 60(9): 094202. doi: 10.7498/aps.60.094202
    [17] Feng Bo, Gan Xue-Tao, Liu Sheng, Zhao Jian-Lin. Transformation of multi-edge-dislocations to screw-dislocations in optical field. Acta Physica Sinica, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [18] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [19] Wang Ning, Lu Yu-Tian, Li Xiao-Li, Jiao Zhi-Yong. Theoretical research on InnoSlab output beam quality with hybrid resonator. Acta Physica Sinica, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [20] Kang Xiao-Ping, He Zhong, Lü Bai-Da. The beam quality of vectorial nonparaxial Hermite-Laguerre-Gaussian beams. Acta Physica Sinica, 2006, 55(9): 4569-4574. doi: 10.7498/aps.55.4569
Metrics
  • Abstract views:  9614
  • PDF Downloads:  491
  • Cited By: 0
Publishing process
  • Received Date:  12 February 2018
  • Accepted Date:  19 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回